IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v93y2014icp116-125.html
   My bibliography  Save this article

A smoothing stochastic algorithm for quantile estimation

Author

Listed:
  • Amiri, Aboubacar
  • Thiam, Baba

Abstract

In this paper, we provide the almost-sure convergence and the asymptotic normality of a smooth version of the Robbins–Monro algorithm for the quantile estimation. A Monte Carlo simulation study shows that our proposed method works well within the framework of a data stream.

Suggested Citation

  • Amiri, Aboubacar & Thiam, Baba, 2014. "A smoothing stochastic algorithm for quantile estimation," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 116-125.
  • Handle: RePEc:eee:stapro:v:93:y:2014:i:c:p:116-125
    DOI: 10.1016/j.spl.2014.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    2. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camirand Lemyre, Felix & Decrouez, Geoffrey, 2021. "Nonparametric recursive estimation of the copula," Statistics & Probability Letters, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    2. Lu Ou & Zhibiao Zhao, 2021. "Value‐at‐risk forecasting via dynamic asymmetric exponential power distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 291-300, March.
    3. Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
    4. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    5. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    6. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    7. Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
    8. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
    9. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    10. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    11. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    12. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    14. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    15. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    16. Schaumburg, Julia, 2010. "Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory," SFB 649 Discussion Papers 2010-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
    18. Inés Jiménez & Andrés Mora-Valencia & Trino-Manuel Ñíguez & Javier Perote, 2020. "Portfolio Risk Assessment under Dynamic (Equi)Correlation and Semi-Nonparametric Estimation: An Application to Cryptocurrencies," Mathematics, MDPI, vol. 8(12), pages 1-24, November.
    19. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    20. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:93:y:2014:i:c:p:116-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.