IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i3p548-556.html
   My bibliography  Save this article

Optimal rates of convergence in the Weibull model based on kernel-type estimators

Author

Listed:
  • Mercadier, Cécile
  • Soulier, Philippe

Abstract

Let F be a distribution function in the maximal domain of attraction of the Gumbel distribution such that −log(1−F(x))=x1/θL(x) for a positive real number θ, called the Weibull tail index, and a slowly varying function L. It is well known that the estimators of θ have a very slow rate of convergence. We establish here a sharp optimality result in the minimax sense, that is when L is treated as an infinite dimensional nuisance parameter belonging to some functional class. We also establish the rate optimal asymptotic property of a data-driven choice of the sample fraction that is used for estimation.

Suggested Citation

  • Mercadier, Cécile & Soulier, Philippe, 2012. "Optimal rates of convergence in the Weibull model based on kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 548-556.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:548-556
    DOI: 10.1016/j.spl.2011.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beirlant, J. & Bouquiaux, C. & Werker, B.J.M., 2006. "Semiparametric lower bounds for tail-index estimation," Other publications TiSEM 4f434455-72a7-4b68-b972-d, Tilburg University, School of Economics and Management.
    2. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    3. Mason, David M., 1983. "The asymptotic distribution of weighted empirical distribution functions," Stochastic Processes and their Applications, Elsevier, vol. 15(1), pages 99-109, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    3. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    4. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    5. Kaufmann, E. & Reiss, R. -D., 1998. "Approximation of the Hill estimator process," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 347-354, August.
    6. Gardes, Laurent & Girard, Stéphane, 2016. "On the estimation of the functional Weibull tail-coefficient," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 29-45.
    7. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    8. Raymond Knott & Marco Polenghi, 2006. "Assessing central counterparty margin coverage on futures contracts using GARCH models," Bank of England working papers 287, Bank of England.
    9. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    10. Giorgio Fagiolo & Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2010. "On the distributional properties of household consumption expenditures: the case of Italy," Empirical Economics, Springer, vol. 38(3), pages 717-741, June.
    11. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
    12. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    13. Ergun, Lerby M., 2023. "Extreme downside risk in the cross-section of asset returns," International Review of Financial Analysis, Elsevier, vol. 90(C).
    14. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    15. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    16. Kole, H.J.W.G. & Koedijk, C.G. & Verbeek, M.J.C.M., 2003. "Stress Testing with Student's t Dependence," ERIM Report Series Research in Management ERS-2003-056-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Laurens Haan & Cécile Mercadier & Chen Zhou, 2016. "Adapting extreme value statistics to financial time series: dealing with bias and serial dependence," Finance and Stochastics, Springer, vol. 20(2), pages 321-354, April.
    18. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    19. Jon Danielsson & Lerby Ergun & Casper G. de Vries, 2018. "Challenges in Implementing Worst-Case Analysis," Staff Working Papers 18-47, Bank of Canada.
    20. Carolina Castaldi & Koen Frenken & Bart Los, 2015. "Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting," Regional Studies, Taylor & Francis Journals, vol. 49(5), pages 767-781, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:548-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.