IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v39y1998i4p347-354.html
   My bibliography  Save this article

Approximation of the Hill estimator process

Author

Listed:
  • Kaufmann, E.
  • Reiss, R. -D.

Abstract

An approximation result for a vector of Hill estimators - in the following addressed as Hill process - is proven. It is shown that the Hill process can be approximated on a suitable probability space by a Wiener process and a deterministic bias term. Moreover, the accuracy of the approximation is, roughly speaking, given by the rate of convergence of a certain term in the Karamata representation of the quantile function.

Suggested Citation

  • Kaufmann, E. & Reiss, R. -D., 1998. "Approximation of the Hill estimator process," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 347-354, August.
  • Handle: RePEc:eee:stapro:v:39:y:1998:i:4:p:347-354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00079-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holger Drees & Laurens F.M. de Haan & Sidney Resnick, 1998. "How to make a Hill Plot," Tinbergen Institute Discussion Papers 98-090/4, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    3. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    4. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    5. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    6. Raymond Knott & Marco Polenghi, 2006. "Assessing central counterparty margin coverage on futures contracts using GARCH models," Bank of England working papers 287, Bank of England.
    7. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    8. Giorgio Fagiolo & Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2010. "On the distributional properties of household consumption expenditures: the case of Italy," Empirical Economics, Springer, vol. 38(3), pages 717-741, June.
    9. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
    10. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    11. Ergun, Lerby M., 2023. "Extreme downside risk in the cross-section of asset returns," International Review of Financial Analysis, Elsevier, vol. 90(C).
    12. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    13. Mercadier, Cécile & Soulier, Philippe, 2012. "Optimal rates of convergence in the Weibull model based on kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 548-556.
    14. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    15. Kole, H.J.W.G. & Koedijk, C.G. & Verbeek, M.J.C.M., 2003. "Stress Testing with Student's t Dependence," ERIM Report Series Research in Management ERS-2003-056-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Laurens Haan & Cécile Mercadier & Chen Zhou, 2016. "Adapting extreme value statistics to financial time series: dealing with bias and serial dependence," Finance and Stochastics, Springer, vol. 20(2), pages 321-354, April.
    17. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    18. Jon Danielsson & Lerby Ergun & Casper G. de Vries, 2018. "Challenges in Implementing Worst-Case Analysis," Staff Working Papers 18-47, Bank of Canada.
    19. Carolina Castaldi & Koen Frenken & Bart Los, 2015. "Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting," Regional Studies, Taylor & Francis Journals, vol. 49(5), pages 767-781, May.
    20. Goegebeur, Yuri & Guillou, Armelle & Pedersen, Tine & Qin, Jing, 2022. "Extreme-value based estimation of the conditional tail moment with application to reinsurance rating," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 102-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:39:y:1998:i:4:p:347-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.