IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i2p295-302.html
   My bibliography  Save this article

Stochastic orders of the Marshall–Olkin extended distribution

Author

Listed:
  • Nanda, Asok K.
  • Das, Suchismita

Abstract

A general method of introducing a parameter, called tilt parameter, has been discussed by Marshall and Olkin (1997) to give more flexibility in modelling. In this paper, we take the tilt parameter of the Marshall–Olkin extended family as a random variable. The closure of this model under different stochastic orders viz. ageing intensity order, likelihood ratio order, shifted likelihood ratio orders and shifted hazard rate orders is discussed.

Suggested Citation

  • Nanda, Asok K. & Das, Suchismita, 2012. "Stochastic orders of the Marshall–Olkin extended distribution," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 295-302.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:2:p:295-302
    DOI: 10.1016/j.spl.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Kirmani & Ramesh Gupta, 2001. "On the Proportional Odds Model in Survival Analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 203-216, June.
    2. Shanthikumar, J. George & Yao, David D., 1986. "The preservation of likelihood ratio ordering under convolution," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 259-267, December.
    3. M. E. Ghitany & E. K. Al-Hussaini & R. A. Al-Jarallah, 2005. "Marshall-Olkin extended weibull distribution and its application to censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(10), pages 1025-1034.
    4. Chrys Caroni, 2010. "Testing for the Marshall–Olkin extended form of the Weibull distribution," Statistical Papers, Springer, vol. 51(2), pages 325-336, June.
    5. Gupta, Ramesh C. & Lvin, Sergey & Peng, Cheng, 2010. "Estimating turning points of the failure rate of the extended Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 924-934, April.
    6. Nanda, Asok K. & Bhattacharjee, Subarna & Alam, S.S., 2007. "Properties of aging intensity function," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 365-373, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diren Yeğen & Gamze Özel, 2018. "Marshall-Olkin Half Logistic Distribution with Theory and Applications," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 6(2), pages 407-416, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gauss Cordeiro & Artur Lemonte, 2013. "On the Marshall–Olkin extended Weibull distribution," Statistical Papers, Springer, vol. 54(2), pages 333-353, May.
    2. Diren Yeğen & Gamze Özel, 2018. "Marshall-Olkin Half Logistic Distribution with Theory and Applications," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 6(2), pages 407-416, December.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    5. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    6. P. Sankaran & K. Jayakumar, 2008. "On proportional odds models," Statistical Papers, Springer, vol. 49(4), pages 779-789, October.
    7. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    8. Shaked, Moshe & George Shanthikumar, J., 1995. "Hazard rate ordering of k-out-of-n systems," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 1-8, April.
    9. Mohamed Kayid & Mansour Shrahili, 2023. "Characterization Results on Lifetime Distributions by Scaled Reliability Measures Using Completeness Property in Functional Analysis," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    10. Zubair Ahmad, 2020. "The Zubair-G Family of Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 7(2), pages 195-208, June.
    11. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    12. Hu, Taizhong & Zhu, Zegang, 2001. "An analytic proof of the preservation of the up-shifted likelihood ratio order under convolutions," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 55-61, September.
    13. Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
    14. M. Kayid & S. Izadkhah & Ming J. Zuo, 2017. "Some results on the relative ordering of two frailty models," Statistical Papers, Springer, vol. 58(2), pages 287-301, June.
    15. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    16. Félix Belzunce & Moshe Shaked, 2004. "Failure profiles of coherent systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 477-490, June.
    17. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
    18. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    19. Tommaso Lando, 2022. "Testing convexity of the generalised hazard function," Statistical Papers, Springer, vol. 63(4), pages 1271-1289, August.
    20. Mehdi Basikhasteh & Iman Makhdoom, 2022. "Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 867-880, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:2:p:295-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.