IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i1p37-39.html
   My bibliography  Save this article

On convex hull of d-dimensional fractional Brownian motion

Author

Listed:
  • Davydov, Yu.

Abstract

It is well known that for standard Brownian motion {B(t),t≥0} with values in Rd its convex hull V(t)=conv{B(s),s≤t} with probability 1 contains 0 as an interior point for each t>0 (see Evans, 1985). The aim of this note is to state the analogous property for d-dimensional fractional Brownian motion.

Suggested Citation

  • Davydov, Yu., 2012. "On convex hull of d-dimensional fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 37-39.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:37-39
    DOI: 10.1016/j.spl.2011.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2009. "Covariance function of vector self-similar processes," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2415-2421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    2. Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    3. Gustavo Didier & Vladas Pipiras, 2012. "Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 25(2), pages 353-395, June.
    4. Tim Leung & Theodore Zhao, 2024. "A Noisy Fractional Brownian Motion Model for Multiscale Correlation Analysis of High-Frequency Prices," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    5. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
    6. Bao-Gen Li & Dian-Yi Ling & Zu-Guo Yu, 2020. "Multifractal temporally weighted detrended partial cross-correlation analysis to quantify intrinsic power-law cross-correlation of two non-stationary time series affected by common external factors," Papers 2006.09154, arXiv.org.
    7. Martin Zubeldia & Michel Mandjes, 2021. "Large deviations for acyclic networks of queues with correlated Gaussian inputs," Queueing Systems: Theory and Applications, Springer, vol. 98(3), pages 333-371, August.
    8. Characiejus, Vaidotas & Račkauskas, Alfredas, 2014. "Operator self-similar processes and functional central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2605-2627.
    9. Düker, Marie-Christine, 2020. "Limit theorems in the context of multivariate long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5394-5425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:1:p:37-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.