IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i8p2605-2627.html
   My bibliography  Save this article

Operator self-similar processes and functional central limit theorems

Author

Listed:
  • Characiejus, Vaidotas
  • Račkauskas, Alfredas

Abstract

Let {Xk:k≥1} be a linear process with values in the separable Hilbert space L2(μ) given by Xk=∑j=0∞(j+1)−Dεk−j for each k≥1, where D is defined by Df={d(s)f(s):s∈S} for each f∈L2(μ) with d:S→R and {εk:k∈Z} are independent and identically distributed L2(μ)-valued random elements with Eε0=0 and E‖ε0‖2<∞. We establish sufficient conditions for the functional central limit theorem for {Xk:k≥1} when the series of operator norms ∑j=0∞‖(j+1)−D‖ diverges and show that the limit process generates an operator self-similar process.

Suggested Citation

  • Characiejus, Vaidotas & Račkauskas, Alfredas, 2014. "Operator self-similar processes and functional central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2605-2627.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:8:p:2605-2627
    DOI: 10.1016/j.spa.2014.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414914000581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2014.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laha, R. G. & Rohatgi, V. K., 1981. "Operator self similar stochastic processes in," Stochastic Processes and their Applications, Elsevier, vol. 12(1), pages 73-84, October.
    2. Maejima, Makoto & Mason, J. David, 1994. "Operator-self-similar stable processes," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 139-163, November.
    3. Cremers, Heinz & Kadelka, Dieter, 1986. "On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in LEP," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 305-317, February.
    4. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2009. "Covariance function of vector self-similar processes," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2415-2421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Degui Li & Peter M. Robinson & Han Lin Shang, 2021. "Local Whittle estimation of long‐range dependence for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 685-695, September.
    2. Düker, Marie-Christine, 2018. "Limit theorems for Hilbert space-valued linear processes under long range dependence," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1439-1465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Didier & Vladas Pipiras, 2012. "Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 25(2), pages 353-395, June.
    2. Düker, Marie-Christine, 2018. "Limit theorems for Hilbert space-valued linear processes under long range dependence," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1439-1465.
    3. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2009. "Covariance function of vector self-similar processes," Statistics & Probability Letters, Elsevier, vol. 79(23), pages 2415-2421, December.
    4. Düker, Marie-Christine, 2020. "Limit theorems in the context of multivariate long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5394-5425.
    5. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
    6. Wensheng Wang, 2024. "The Moduli of Continuity for Operator Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2097-2120, September.
    7. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    8. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    9. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    10. Karim M. Abadir & Walter Distaso & Liudas Giraitis, 2011. "An I() model with trend and cycles," Post-Print hal-00834425, HAL.
    11. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    12. Martin Zubeldia & Michel Mandjes, 2021. "Large deviations for acyclic networks of queues with correlated Gaussian inputs," Queueing Systems: Theory and Applications, Springer, vol. 98(3), pages 333-371, August.
    13. Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    14. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    15. Hongshuai Dai, 2013. "Convergence in Law to Operator Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 26(3), pages 676-696, September.
    16. Alfredas Račkauskas & Charles Suquet, 2023. "Asymptotic Normality in Banach Spaces via Lindeberg Method," Journal of Theoretical Probability, Springer, vol. 36(1), pages 409-455, March.
    17. Aue, Alexander & Van Delft, Anne, 2017. "Testing for stationarity of functional time series in the frequency domain," LIDAM Discussion Papers ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Saigo, Tatsuhiko & Tamura, Yozo, 2006. "Operator semi-self-similar processes and their space-scaling matrices," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 675-681, April.
    19. Hongshuai Dai, 2022. "Tandem fluid queue with long-range dependent inputs: sticky behaviour and heavy traffic approximation," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 165-196, June.
    20. Höpfner Reinhard & Kutoyants Yury A., 2009. "On LAN for parametrized continuous periodic signals in a time inhomogeneous diffusion," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 309-326, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:8:p:2605-2627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.