IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1267-1275.html
   My bibliography  Save this article

A general criterion to determine the number of change-points

Author

Listed:
  • Ciuperca, Gabriela

Abstract

A general criterion is proposed to determine the number K of the change-points in a parametric nonlinear multi-response model. Schwarz criterion is a particular case. The change-points depend on regressor values and not on instant of measure. We prove that the proposed estimator for K is consistent. Simulation results, using Monte Carlo technique, for nonlinear models which have numerous applications, support the relevance of the theory.

Suggested Citation

  • Ciuperca, Gabriela, 2011. "A general criterion to determine the number of change-points," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1267-1275, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1267-1275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001106
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ciuperca, Gabriela, 2009. "The M-estimation in a multi-phase random nonlinear model," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 573-580, March.
    2. Bai, Jushan, 1999. "Likelihood ratio tests for multiple structural changes," Journal of Econometrics, Elsevier, vol. 91(2), pages 299-323, August.
    3. Gabriela Ciuperca, 2011. "Penalized least absolute deviations estimation for nonlinear model with change-points," Statistical Papers, Springer, vol. 52(2), pages 371-390, May.
    4. Konrad Nosek, 2010. "Schwarz information criterion based tests for a change-point in regression models," Statistical Papers, Springer, vol. 51(4), pages 915-929, December.
    5. Gabriela Ciuperca, 2011. "Estimating nonlinear regression with and without change-points by the LAD method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 717-743, August.
    6. Koul, Hira L. & Qian, Lianfen & Surgailis, Donatas, 2003. "Asymptotics of M-estimators in two-phase linear regression models," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 123-154, January.
    7. Wu, Y., 2008. "Simultaneous change point analysis and variable selection in a regression problem," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2154-2171, October.
    8. Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Ciuperca & Zahraa Salloum, 2015. "Empirical likelihood test in a posteriori change-point nonlinear model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 919-952, November.
    2. David Ardia & Arnaud Dufays & Carlos Ordás Criado, 2024. "Linking Frequentist and Bayesian Change-Point Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1155-1168, October.
    3. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    4. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    5. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    6. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Ciuperca & Zahraa Salloum, 2015. "Empirical likelihood test in a posteriori change-point nonlinear model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 919-952, November.
    2. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
    3. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    4. Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.
    5. Kang-Ping Lu & Shao-Tung Chang, 2022. "Robust Switching Regressions Using the Laplace Distribution," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    6. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    7. Hansen, Peter Reinhard, 2003. "Structural changes in the cointegrated vector autoregressive model," Journal of Econometrics, Elsevier, vol. 114(2), pages 261-295, June.
    8. Fujii, Takayuki, 2008. "On weak convergence of the likelihood ratio process in multi-phase regression models," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2066-2074, October.
    9. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    10. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    11. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    12. Fuxia Cheng & Hira L. Koul, 2023. "An analog of Bickel–Rosenblatt test for fitting an error density in the two phase linear regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 27-56, January.
    13. Hervé Le Bihan, 2004. "Tests de ruptures : une application au PIB tendanciel français," Économie et Prévision, Programme National Persée, vol. 163(2), pages 133-154.
    14. Antonio E. Noriega & Lorena Medina, 2003. "Quasi purchasing power parity: Structural change in the Mexican peso/us dollar real exchange rate," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 18(2), pages 227-236.
    15. De Santis, Paola & Drago, Carlo, 2014. "Asimmetria del rischio sistematico dei titoli immobiliari americani: nuove evidenze econometriche [Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence]," MPRA Paper 59381, University Library of Munich, Germany.
    16. Noriah Al-Kandari & Emad-Eldin Aly, 2014. "An ANOVA-type test for multiple change points," Statistical Papers, Springer, vol. 55(4), pages 1159-1178, November.
    17. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    18. Chaney, Eric, 2008. "Assessing pacification policy in Iraq: Evidence from Iraqi financial markets," Journal of Comparative Economics, Elsevier, vol. 36(1), pages 1-16, March.
    19. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.
    20. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1267-1275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.