IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i4p506-517.html
   My bibliography  Save this article

The exponentiated generalized inverse Gaussian distribution

Author

Listed:
  • Lemonte, Artur J.
  • Cordeiro, Gauss M.

Abstract

The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set.

Suggested Citation

  • Lemonte, Artur J. & Cordeiro, Gauss M., 2011. "The exponentiated generalized inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 81(4), pages 506-517, April.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:4:p:506-517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00362-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Truc T. Nguyen, 2003. "A proof of the conjecture on positive skewness of generalised inverse Gaussian distributions," Biometrika, Biometrika Trust, vol. 90(1), pages 245-250, March.
    2. H. M. Barakat & Y. H. Abdelkader, 2004. "Computing the moments of order statistics from nonidentical random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(1), pages 15-26, April.
    3. Barndorff-Nielsen, O. & Blæsild, P. & Halgreen, C., 1978. "First hitting time models for the generalized inverse Gaussian distribution," Stochastic Processes and their Applications, Elsevier, vol. 7(1), pages 49-54, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    2. Angelo Koudou & Christophe Ley, 2014. "Efficiency combined with simplicity: new testing procedures for Generalized Inverse Gaussian models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 708-724, December.
    3. Ziyad A. Alhussain & Essam A. Ahmed, 2020. "Estimation of exponentiated Nadarajah-Haghighi distribution under progressively type-II censored sample with application to bladder cancer data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 631-657, June.
    4. Adebisi Ade Ogunde & Gbenga Adelekan Olalude & Oyebimpe Emmanuel Adeniji & Kayode Balogun, 2021. "Lehmann Type II Frechet Poisson Distribution: Properties, Inference and Applications as a Life Time Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-8, June.
    5. A. Asgharzadeh & Hassan S. Bakouch & M. Habibi, 2017. "A generalized binomial exponential 2 distribution: modeling and applications to hydrologic events," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2368-2387, October.
    6. Kousik Maiti & Suchandan Kayal & Aditi Kar Gangopadhyay, 2024. "On Progressively Censored Generalized X-Exponential Distribution: (Non) Bayesian Estimation with an Application to Bladder Cancer Data," Annals of Data Science, Springer, vol. 11(5), pages 1761-1798, October.
    7. Xiao Jiang & Saralees Nadarajah & Thomas Hitchen, 2024. "A Review of Generalized Hyperbolic Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 595-624, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thabane, Lehana & Drekic, Steve, 2003. "Hypothesis testing for the generalized multivariate modified Bessel model," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 360-374, August.
    2. Jedidi, Wissem & Simon, Thomas, 2015. "Diffusion hitting times and the bell-shape," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 38-41.
    3. Abdelkader, Yousry H., 2011. "A Laplace transform method for order statistics from nonidentical random variables and its application in Phase-type distribution," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1143-1149, August.
    4. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    5. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The [beta]-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1445-1461, March.
    6. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    7. H. M. Barakat & Haidy A. Newer, 2022. "Exact prediction intervals for future exponential and Pareto lifetimes based on ordered ranked set sampling of non-random and random size," Statistical Papers, Springer, vol. 63(6), pages 1801-1827, December.
    8. Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
    9. Eduardo A Aponte & Dario Schöbi & Klaas E Stephan & Jakob Heinzle, 2017. "The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-36, August.
    10. Landriault, David & Moutanabbir, Khouzeima & Willmot, Gordon E., 2015. "A note on order statistics in the mixed Erlang case," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 13-18.
    11. Paranaíba, Patrícia F. & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R., 2011. "The beta Burr XII distribution with application to lifetime data," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1118-1136, February.
    12. Gauss Cordeiro & Artur Lemonte, 2013. "On the Marshall–Olkin extended Weibull distribution," Statistical Papers, Springer, vol. 54(2), pages 333-353, May.
    13. Yousry Abdelkader, 2010. "Adjustment of the moments of the project completion times when activity times are exponentially distributed," Annals of Operations Research, Springer, vol. 181(1), pages 503-514, December.
    14. Hariya, Yuu, 2020. "On some identities in law involving exponential functionals of Brownian motion and Cauchy random variable," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5999-6037.
    15. Jiang, Jun & Shang, Pengjian & Zhang, Zuoquan & Li, Xuemei, 2018. "The multi-scale high-order statistical moments of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 474-488.
    16. Saralees Nadarajah, 2006. "Explicit expressions for moments of beta order statistics," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 377-384.
    17. Hlynka, M. & Brill, P.H. & Horn, W., 2010. "A method for obtaining Laplace transforms of order statistics of Erlang random variables," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 9-18, January.
    18. Matsumoto, Hiroyuki & Yor, Marc, 2003. "Interpretation via Brownian motion of some independence properties between GIG and gamma variables," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 253-259, February.
    19. Ruijie Guan & Xu Zhao & Weihu Cheng & Yaohua Rong, 2021. "A New Generalized t Distribution Based on a Distribution Construction Method," Mathematics, MDPI, vol. 9(19), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:4:p:506-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.