IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v7y1978i1p49-54.html
   My bibliography  Save this article

First hitting time models for the generalized inverse Gaussian distribution

Author

Listed:
  • Barndorff-Nielsen, O.
  • Blæsild, P.
  • Halgreen, C.

Abstract

Any generalized inverse Gaussian distribution with a non-positive power parameter is shown to be the distribution of the first hitting time of level 0 for each of a variety of time-homogeneous diffusions on the interval [0, [infinity]). The infinite divisibility of the generalized inverse Gaussian distributions is a simple consequence of this and an elementary convolution formula for these distributions.

Suggested Citation

  • Barndorff-Nielsen, O. & Blæsild, P. & Halgreen, C., 1978. "First hitting time models for the generalized inverse Gaussian distribution," Stochastic Processes and their Applications, Elsevier, vol. 7(1), pages 49-54, March.
  • Handle: RePEc:eee:spapps:v:7:y:1978:i:1:p:49-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(78)90036-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hariya, Yuu, 2020. "On some identities in law involving exponential functionals of Brownian motion and Cauchy random variable," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5999-6037.
    2. Lemonte, Artur J. & Cordeiro, Gauss M., 2011. "The exponentiated generalized inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 81(4), pages 506-517, April.
    3. Matsumoto, Hiroyuki & Yor, Marc, 2003. "Interpretation via Brownian motion of some independence properties between GIG and gamma variables," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 253-259, February.
    4. Thabane, Lehana & Drekic, Steve, 2003. "Hypothesis testing for the generalized multivariate modified Bessel model," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 360-374, August.
    5. Jedidi, Wissem & Simon, Thomas, 2015. "Diffusion hitting times and the bell-shape," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 38-41.
    6. Eduardo A Aponte & Dario Schöbi & Klaas E Stephan & Jakob Heinzle, 2017. "The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-36, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:7:y:1978:i:1:p:49-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.