IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1972-1976.html
   My bibliography  Save this article

How close are alternative bootstrap P-values?

Author

Listed:
  • Lloyd, Chris J.

Abstract

The parametric bootstrap P-value based on a test statistic T is the exact tail probability of the observed value t, with the null maximum likelihood estimate of the nuisance parameters substituted. This P-value is known to lead to tests whose size is closer to nominal asymptotically than the first order test. One issue that has not been addressed is whether parametric bootstrap might reduce the impact of the choice of basic test statistic. It is shown that bootstrap P-values based on different first order statistics differ to second order i.e to O(m-1) where m is a measure of sample size. Boostrap reduces the impact of the test statistic choice. Just as importantly, it is shown numerically that this asymptotic rate may under-estimate how close alternative bootstrap P-values are for small sample sizes.

Suggested Citation

  • Lloyd, Chris J., 2010. "How close are alternative bootstrap P-values?," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1972-1976, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1972-1976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00250-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/555 is not listed on IDEAS
    2. A. C. Davison & D. A. S. Fraser & N. Reid, 2006. "Improved likelihood inference for discrete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 495-508, June.
    3. Thomas J. Diciccio & G. Alastair Young, 2008. "Conditional properties of unconditional parametric bootstrap procedures for inference in exponential families," Biometrika, Biometrika Trust, vol. 95(3), pages 747-758.
    4. D.A.S. Fraser & Judith Rousseau, 2008. "Studentization and deriving accurate p-values," Biometrika, Biometrika Trust, vol. 95(1), pages 1-16.
    5. Lee, Stephen M.S. & Young, G. Alastair, 2005. "Parametric bootstrapping with nuisance parameters," Statistics & Probability Letters, Elsevier, vol. 71(2), pages 143-153, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lloyd, Chris J., 2012. "Computing highly accurate or exact P-values using importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1784-1794.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lloyd, Chris J., 2013. "A numerical investigation of the accuracy of parametric bootstrap for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 1-6.
    2. Chris J. Lloyd, 2010. "Bootstrap and Second-Order Tests of Risk Difference," Biometrics, The International Biometric Society, vol. 66(3), pages 975-982, September.
    3. Robert L. Paige & A. Alexandre Trindade & P. Harshini Fernando, 2009. "Saddlepoint‐Based Bootstrap Inference for Quadratic Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 98-111, March.
    4. D. A. S. Fraser & N. Reid & E. Marras & G. Y. Yi, 2010. "Default priors for Bayesian and frequentist inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 631-654, November.
    5. Martin Biehler & Heinz Holling & Philipp Doebler, 2015. "Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 665-688, September.
    6. A. C. Davison & D. A. S. Fraser & N. Reid & N. Sartori, 2014. "Accurate Directional Inference for Vector Parameters in Linear Exponential Families," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 302-314, March.
    7. Ip, Edward H. & Wang, Yuchung J., 2008. "A note on cuts for contingency tables," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2356-2363, November.
    8. Lloyd, Chris J., 2012. "Computing highly accurate or exact P-values using importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1784-1794.
    9. Guogen Shan & Changxing Ma, 2014. "Efficient tests for one sample correlated binary data with applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 175-188, June.
    10. Rekkas, M., 2009. "Approximate inference for the multinomial logit model," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 237-242, January.
    11. Godfrey, L.G., 2007. "Alternative approaches to implementing Lagrange multiplier tests for serial correlation in dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3282-3295, April.
    12. Lu, H.Y. Kevin & Young, G. Alastair, 2012. "Parametric bootstrap under model mis-specification," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2410-2420.
    13. Donald Alan Pierce & Ruggero Bellio, 2017. "Modern Likelihood-Frequentist Inference," International Statistical Review, International Statistical Institute, vol. 85(3), pages 519-541, December.
    14. Giuseppe Cavaliere & Iliyan Georgiev, 2020. "Inference Under Random Limit Bootstrap Measures," Econometrica, Econometric Society, vol. 88(6), pages 2547-2574, November.
    15. Di Caterina, Claudia & Kosmidis, Ioannis, 2019. "Location-adjusted Wald statistics for scalar parameters," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 126-142.
    16. Stefano Cabras & María Eugenia Castellanos & Oliver Ratmann, 2021. "Goodness of fit for models with intractable likelihood," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 713-736, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1972-1976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.