IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i3p747-758.html
   My bibliography  Save this article

Conditional properties of unconditional parametric bootstrap procedures for inference in exponential families

Author

Listed:
  • Thomas J. Diciccio
  • G. Alastair Young

Abstract

Higher-order inference about a scalar parameter in the presence of nuisance parameters can be achieved by bootstrapping, in circumstances where the parameter of interest is a component of the canonical parameter in a full exponential family. The optimal test, which is approximated, is a conditional one based on conditioning on the sufficient statistic for the nuisance parameter. A bootstrap procedure that ignores the conditioning is shown to have desirable conditional properties in providing third-order relative accuracy in approximation of p-values associated with the optimal test, in both continuous and discrete models. The bootstrap approach is equivalent to third-order analytical approaches, and is demonstrated in a number of examples to give very accurate approximations even for very small sample sizes. Copyright 2008, Oxford University Press.

Suggested Citation

  • Thomas J. Diciccio & G. Alastair Young, 2008. "Conditional properties of unconditional parametric bootstrap procedures for inference in exponential families," Biometrika, Biometrika Trust, vol. 95(3), pages 747-758.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:747-758
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn011
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cavaliere & Iliyan Georgiev, 2020. "Inference Under Random Limit Bootstrap Measures," Econometrica, Econometric Society, vol. 88(6), pages 2547-2574, November.
    2. Lloyd, Chris J., 2010. "How close are alternative bootstrap P-values?," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1972-1976, December.
    3. Lloyd, Chris J., 2013. "A numerical investigation of the accuracy of parametric bootstrap for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 1-6.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:747-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.