IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i23-24p1881-1885.html
   My bibliography  Save this article

Fisher information of scale

Author

Listed:
  • Ruckdeschel, Peter
  • Rieder, Helmut

Abstract

Motivated by the information bound for the asymptotic variance of M-estimates for scale, we define Fisher information of scale of any distribution function F on the real line as the supremum of all , where [phi] ranges over the continuously differentiable functions with derivative of compact support and where, by convention, 0/0:=0. In addition, we enforce equivariance by a scale factor. Fisher information of scale is weakly lower semicontinuous and convex. It is finite iff the usual assumptions on densities hold, under which Fisher information of scale is classically defined, and then both classical and our notions agree. Fisher information of finite scale is also equivalent to L2-differentiability and local asymptotic normality, respectively, of the scale model induced by F.

Suggested Citation

  • Ruckdeschel, Peter & Rieder, Helmut, 2010. "Fisher information of scale," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1881-1885, December.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1881-1885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00238-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. anonymous, 1991. "Fed upgrades functional cost analysis program," Financial Update, Federal Reserve Bank of Atlanta, issue Win, pages 1-2,6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Ruckdeschel & Nataliya Horbenko, 2012. "Yet another breakdown point notion: EFSBP," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1025-1047, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    2. Boudou, Alain & Viguier-Pla, Sylvie, 2010. "Relation between unit operators proximity and their associated spectral measures," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1724-1732, December.
    3. Horst, Ulrich & Scheinkman, Jose A., 2006. "Equilibria in systems of social interactions," Journal of Economic Theory, Elsevier, vol. 130(1), pages 44-77, September.
    4. Stein, Noah D. & Parrilo, Pablo A. & Ozdaglar, Asuman, 2011. "Correlated equilibria in continuous games: Characterization and computation," Games and Economic Behavior, Elsevier, vol. 71(2), pages 436-455, March.
    5. Fasen, Vicky & Fuchs, Florian, 2013. "On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 229-273.
    6. Baeumer, B. & Benson, D.A. & Meerschaert, M.M., 2005. "Advection and dispersion in time and space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 245-262.
    7. Bellucci, S. & Tiwari, B.N., 2011. "Thermodynamic geometry: Evolution, correlation and phase transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2074-2086.
    8. Egami, Masahiko & Young, Virginia R., 2009. "Optimal reinsurance strategy under fixed cost and delay," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 1015-1034, March.
    9. Suzuki, Takashi, 2013. "Core and competitive equilibria of a coalitional exchange economy with infinite time horizon," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 234-244.
    10. Abe, Koji, 2012. "A geometric approach to temptation," Journal of Mathematical Economics, Elsevier, vol. 48(2), pages 92-97.
    11. Bischoff, Wolfgang & Somayasa, Wayan, 2009. "The limit of the partial sums process of spatial least squares residuals," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2167-2177, November.
    12. Shishebor, Z. & Soltani, A.R. & Zamani, A., 2011. "Asymptotic distribution for periodograms of infinite dimensional discrete time periodically correlated processes," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1118-1125, August.
    13. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
    14. Kim, Yongdai & Kim, Bumsoo & Jang, Woncheol, 2010. "Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1339-1351, July.
    15. Breitmeyer, Carsten & Hakenes, Hendrik & Pfingsten, Andreas, 2004. "From poverty measurement to the measurement of downside risk," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 327-348, May.
    16. Ke-Ping Li & Zi-You Gao & Bin Ning, 2005. "Modeling The Railway Traffic Using Cellular Automata Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 921-932.
    17. Hancock, Diana & Humphrey, David B., 1997. "Payment transactions, instruments, and systems: A survey," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1573-1624, December.
    18. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    19. Hosseini, Roozbeh & Jones, Larry E. & Shourideh, Ali, 2013. "Optimal contracting with dynastic altruism: Family size and per capita consumption," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1806-1840.
    20. Bosi, Gianni & Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban & Zuanon, Magali E., 2007. "Isotonies on ordered cones through the concept of a decreasing scale," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 115-127, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:23-24:p:1881-1885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.