IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v71y2011i2p436-455.html
   My bibliography  Save this article

Correlated equilibria in continuous games: Characterization and computation

Author

Listed:
  • Stein, Noah D.
  • Parrilo, Pablo A.
  • Ozdaglar, Asuman

Abstract

We present several new characterizations of correlated equilibria in games with continuous utility functions. These have the advantage of being more computationally and analytically tractable than the standard definition in terms of departure functions. We use these characterizations to construct effective algorithms for approximating a single correlated equilibrium or the entire set of correlated equilibria of a game with polynomial utility functions.

Suggested Citation

  • Stein, Noah D. & Parrilo, Pablo A. & Ozdaglar, Asuman, 2011. "Correlated equilibria in continuous games: Characterization and computation," Games and Economic Behavior, Elsevier, vol. 71(2), pages 436-455, March.
  • Handle: RePEc:eee:gamebe:v:71:y:2011:i:2:p:436-455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(10)00065-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizio Germano & Gábor Lugosi, 2007. "Existence of Sparsely Supported Correlated Equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 575-578, September.
    2. Gilboa, Itzhak & Zemel, Eitan, 1989. "Nash and correlated equilibria: Some complexity considerations," Games and Economic Behavior, Elsevier, vol. 1(1), pages 80-93, March.
    3. Noah Stein & Asuman Ozdaglar & Pablo Parrilo, 2008. "Separable and low-rank continuous games," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 475-504, December.
    4. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    5. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    6. , P. & , Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    7. Sergiu Hart & David Schmeidler, 2013. "Existence Of Correlated Equilibria," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 1, pages 3-14, World Scientific Publishing Co. Pte. Ltd..
    8. Stoltz, Gilles & Lugosi, Gabor, 2007. "Learning correlated equilibria in games with compact sets of strategies," Games and Economic Behavior, Elsevier, vol. 59(1), pages 187-208, April.
    9. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    10. anonymous, 1991. "Fed upgrades functional cost analysis program," Financial Update, Federal Reserve Bank of Atlanta, issue Win, pages 1-2,6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jess Benhabib & Pengfei Wang & Yi Wen, 2015. "Sentiments and Aggregate Demand Fluctuations," Econometrica, Econometric Society, vol. 83, pages 549-585, March.
    2. Fook Wai Kong & Polyxeni-Margarita Kleniati & Berç Rustem, 2012. "Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 237-261, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    2. Fook Wai Kong & Polyxeni-Margarita Kleniati & Berç Rustem, 2012. "Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 237-261, April.
    3. Noah Stein & Asuman Ozdaglar & Pablo Parrilo, 2011. "Structure of extreme correlated equilibria: a zero-sum example and its implications," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 749-767, November.
    4. Jiang, Albert Xin & Leyton-Brown, Kevin, 2015. "Polynomial-time computation of exact correlated equilibrium in compact games," Games and Economic Behavior, Elsevier, vol. 91(C), pages 347-359.
    5. Brendan Kline & Elie Tamer, 2024. "Counterfactual Analysis in Empirical Games," Papers 2410.12731, arXiv.org.
    6. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
    7. Yannick Viossat, 2003. "Geometry, Correlated Equilibria and Zero-Sum Games," Working Papers hal-00242993, HAL.
    8. Fook Kong & Berç Rustem, 2013. "Welfare-maximizing correlated equilibria using Kantorovich polynomials with sparsity," Journal of Global Optimization, Springer, vol. 57(1), pages 251-277, September.
    9. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    10. Yohan Pelosse, 2024. "Correlated Equilibrium Strategies with Multiple Independent Randomization Devices," Working Papers 2024-05, Swansea University, School of Management.
    11. Hillas, John & Samet, Dov, 2022. "Non-Bayesian correlated equilibrium as an expression of non-Bayesian rationality," Games and Economic Behavior, Elsevier, vol. 135(C), pages 1-15.
    12. Ayala Mashiah-Yaakovi, 2015. "Correlated Equilibria in Stochastic Games with Borel Measurable Payoffs," Dynamic Games and Applications, Springer, vol. 5(1), pages 120-135, March.
    13. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    14. Soham R. Phade & Venkat Anantharam, 2019. "On the Geometry of Nash and Correlated Equilibria with Cumulative Prospect Theoretic Preferences," Decision Analysis, INFORMS, vol. 16(2), pages 142-156, June.
    15. Rabah Amir & Sergei Belkov & Igor V. Evstigneev, 2017. "Correlated equilibrium in a nutshell," Theory and Decision, Springer, vol. 83(4), pages 457-468, December.
    16. Ferenc Forgó, 2011. "Generalized correlated equilibrium for two-person games in extensive form with perfect information," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 201-213, June.
    17. Ozdogan, Ayca & Saglam, Ismail, 2021. "Correlated equilibrium under costly disobedience," Mathematical Social Sciences, Elsevier, vol. 114(C), pages 98-104.
    18. Stoltz, Gilles & Lugosi, Gabor, 2007. "Learning correlated equilibria in games with compact sets of strategies," Games and Economic Behavior, Elsevier, vol. 59(1), pages 187-208, April.
    19. Friedman, Daniel & Rabanal, Jean Paul & Rud, Olga A. & Zhao, Shuchen, 2022. "On the empirical relevance of correlated equilibrium," Journal of Economic Theory, Elsevier, vol. 205(C).
    20. Forgó, Ferenc, 2010. "A generalization of correlated equilibrium: A new protocol," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 186-190, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:71:y:2011:i:2:p:436-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.