IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324001929.html
   My bibliography  Save this article

Double weakly singular kernels in stochastic Volterra integral equations with application to the rough Heston model

Author

Listed:
  • Farkhondeh Rouz, O.
  • Shahmorad, S.
  • Ahmadian, D.

Abstract

This paper focuses on investigating the stochastic Volterra integral equations (SVIEs) with double weakly singular kernels. Our primary objective is to examine the well-posedness of the proposed equation. Specifically, we explore the presence of existence, uniqueness, boundedness, and the continuous dependence of the exact solution on the initial data. Additionally, we develop a stochastic θ-scheme as a numerical solution for the equation and demonstrate that the convergence rate of the scheme is influenced by the kernel parameters. To validate the accuracy and reliability of our theoretical findings, we present two numerical examples. Notably, one of these examples concentrates on estimating the price of a European call option using the Heston stochastic volatility model with a singular kernel. Our results, when compared to the corresponding findings by Li et al. [3], not only relax the integrable limitations of singular kernels but also establish a precise convergence order. In addition, we propose an improved scheme, based on the efficient sum-of-exponentials (SOE) approximation, to address the low computational efficiency of the stochastic θ-scheme. The results confirm that our approach aligns significantly with the expected physical interpretations.

Suggested Citation

  • Farkhondeh Rouz, O. & Shahmorad, S. & Ahmadian, D., 2024. "Double weakly singular kernels in stochastic Volterra integral equations with application to the rough Heston model," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001929
    DOI: 10.1016/j.amc.2024.128720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhidong, 2008. "Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1062-1071, July.
    2. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    3. Zhao, Qian & Wang, Rongming & Wei, Jiaqin, 2016. "Exponential utility maximization for an insurer with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 89-104.
    4. Nacira Agram & Bernt Øksendal, 2015. "Malliavin Calculus and Optimal Control of Stochastic Volterra Equations," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 1070-1094, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    2. Henrique Guerreiro & Jo~ao Guerra, 2022. "VIX pricing in the rBergomi model under a regime switching change of measure," Papers 2201.10391, arXiv.org.
    3. Yushi Hamaguchi, 2019. "Time-inconsistent consumption-investment problems in incomplete markets under general discount functions," Papers 1912.01281, arXiv.org, revised Mar 2021.
    4. Carsten Chong, 2017. "Lévy-driven Volterra Equations in Space and Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1014-1058, September.
    5. Andrés Cárdenas & Sergio Pulido & Rafael Serrano, 2022. "Existence of optimal controls for stochastic Volterra equations," Working Papers hal-03720342, HAL.
    6. Herv'e Andr`es & Benjamin Jourdain, 2024. "Existence, uniqueness and positivity of solutions to the Guyon-Lekeufack path-dependent volatility model with general kernels," Papers 2408.02477, arXiv.org.
    7. Richard, Alexandre & Tan, Xiaolu & Yang, Fan, 2021. "Discrete-time simulation of Stochastic Volterra equations," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 109-138.
    8. Jie, Lijuan & Luo, Liangqing & Zhang, Hua, 2024. "One-dimensional McKean–Vlasov stochastic Volterra equations with Hölder diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 205(C).
    9. Aur'elien Alfonsi, 2023. "Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation," Papers 2302.07758, arXiv.org, revised Oct 2024.
    10. Hu, Yaozhong & Øksendal, Bernt, 2019. "Linear Volterra backward stochastic integral equations," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 626-633.
    11. Chen Shou & Xiang Shengpeng & He Hongbo, 2019. "Do Time Preferences Matter in Intertemporal Consumption and Portfolio Decisions?," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 19(2), pages 1-13, June.
    12. Deya, Aurélien & Tindel, Samy, 2011. "Rough Volterra equations 2: Convolutional generalized integrals," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1864-1899, August.
    13. Prömel, David J. & Scheffels, David, 2023. "Stochastic Volterra equations with Hölder diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 291-315.
    14. Michele Giordano & Anton Yurchenko-Tytarenko, 2024. "Optimal control in linear-quadratic stochastic advertising models with memory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 275-298, June.
    15. Aur'elien Alfonsi & Ahmed Kebaier, 2021. "Approximation of Stochastic Volterra Equations with kernels of completely monotone type," Papers 2102.13505, arXiv.org, revised Mar 2022.
    16. Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
    17. Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
    18. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
    19. David Nualart & Bhargobjyoti Saikia, 2023. "Error distribution of the Euler approximation scheme for stochastic Volterra equations," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1829-1876, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324001929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.