On mean exit time from a curvilinear domain
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yaozhong Hu & Bernt Øksendal, 1998. "Optimal time to invest when the price processes are geometric Brownian motions," Finance and Stochastics, Springer, vol. 2(3), pages 295-310.
- Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Guo, Zhi Jun, 2008. "A note on the CIR process and the existence of equivalent martingale measures," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 481-487, April.
- Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Makasu, Cloud, 2010. "Controlling a stopped diffusion process to reach a goal," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1218-1222, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
- Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
- Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
- Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
- Hiroaki Hata & Nien-Lin Liu & Kazuhiro Yasuda, 2022. "Expressions of forward starting option price in Hull–White stochastic volatility model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 101-135, June.
- Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006.
"Pricing and Inference with Mixtures of Conditionally Normal Processes,"
Working Papers
2006-28, Center for Research in Economics and Statistics.
- Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
- Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
- Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
- Ghysels, E. & Harvey, A. & Renault, E., 1995.
"Stochastic Volatility,"
Papers
95.400, Toulouse - GREMAQ.
- Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," LIDAM Discussion Papers CORE 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
- Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
- Vicky Henderson & David Hobson, 2001. "Passport options with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 97-118.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
- Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
- Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
- Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
- Li, Minqiang, 2014. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," MPRA Paper 54595, University Library of Munich, Germany.
- Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
- Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
- Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
- Gurdip S. Bakshi & Zhiwu Chen, 1996. "An Alternative Valuation Model for Contingent Claims," Yale School of Management Working Papers ysm78, Yale School of Management.
- Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:17:p:2859-2863. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.