IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i13p1823-1825.html
   My bibliography  Save this article

A matrix version of Chernoff inequality

Author

Listed:
  • Wei, Zhengyuan
  • Zhang, Xinsheng

Abstract

An interesting result from the point of view of upper variance bounds is the inequality of Chernoff [Chernoff, H., 1981. A note on an inequality involving the normal distribution. Annals of Probability 9, 533-535]. Namely, that for every absolutely continuous function g with derivative g' such that , and for standard normal r.v. [xi], . Both the usefulness and simplicity of this inequality have generated a great deal of extensions, as well as alternative proofs. Particularly, Olkin and Shepp [Olkin, I., Shepp, L., 2005. A matrix variance inequality. Journal of Statistical Planning and Inference 130, 351-358] obtained an inequality for the covariance matrix of k functions. However, all the previous papers have focused on univariate function and univariate random variable. We provide here a covariance matrix inequality for multivariate function of multivariate normal distribution.

Suggested Citation

  • Wei, Zhengyuan & Zhang, Xinsheng, 2008. "A matrix version of Chernoff inequality," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1823-1825, September.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1823-1825
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00046-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willink, R., 2005. "Normal moments and Hermite polynomials," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 271-275, July.
    2. Chen, Louis H. Y., 1982. "An inequality for the multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 12(2), pages 306-315, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Korwar, 1991. "On characterizations of distributions by mean absolute deviation and variance bounds," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 287-295, June.
    2. Giorgos Afendras, 2013. "Unified extension of variance bounds for integrated Pearson family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 687-702, August.
    3. Lorenzo Garlappi & Georgios Skoulakis, 2009. "Numerical Solutions to Dynamic Portfolio Problems: The Case for Value Function Iteration using Taylor Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 193-207, March.
    4. Chao Huang & Martin Styner & Hongtu Zhu, 2015. "Clustering High-Dimensional Landmark-Based Two-Dimensional Shape Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 946-961, September.
    5. Goodarzi, F. & Amini, M. & Mohtashami Borzadaran, G.R., 2016. "On upper bounds for the variance of functions of the inactivity time," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 62-71.
    6. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    7. Papadatos, N. & Papathanasiou, V., 1998. "Variational Inequalities for Arbitrary Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 154-168, November.
    8. Giorgos Afendras & Vassilis Papathanasiou, 2014. "A note on a variance bound for the multinomial and the negative multinomial distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(3), pages 179-183, April.
    9. Tang, Hsiu-Khuern & See, Chuen-Teck, 2009. "Variance inequalities using first derivatives," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1277-1281, May.
    10. Barman, Kalyan & Upadhye, Neelesh S., 2022. "On Brascamp–Lieb and Poincaré type inequalities for generalized tempered stable distribution," Statistics & Probability Letters, Elsevier, vol. 189(C).
    11. Withers, Christopher S. & Nadarajah, Saralees, 2010. "Some conditional expectation identities for the multivariate normal," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2250-2253, October.
    12. Wan, Xiangwei & Yang, Nian, 2021. "Hermite expansion of transition densities and European option prices for multivariate diffusions with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    13. Sun, Ping, 2007. "Moment representation of Bernoulli polynomial, Euler polynomial and Gegenbauer polynomials," Statistics & Probability Letters, Elsevier, vol. 77(7), pages 748-751, April.
    14. Salinelli, Ernesto, 2009. "Nonlinear principal components, II: Characterization of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 652-660, April.
    15. Song, Iickho & Lee, Seungwon, 2015. "Explicit formulae for product moments of multivariate Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 27-34.
    16. Wei, Zhengyuan & Zhang, Xinsheng, 2009. "Covariance matrix inequalities for functions of Beta random variables," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 873-879, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1823-1825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.