IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v12y1982i2p306-315.html
   My bibliography  Save this article

An inequality for the multivariate normal distribution

Author

Listed:
  • Chen, Louis H. Y.

Abstract

Herman Chernoff used Hermite polynomials to prove an inequality for the normal distribution. This inequality is useful in solving a variation of the classical isoperimetric problem which, in turn, is relevant to data compression in the theory of element identification. As the inequality is of interest in itself, we prove a multivariate generalization of it using a different argument.

Suggested Citation

  • Chen, Louis H. Y., 1982. "An inequality for the multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 12(2), pages 306-315, June.
  • Handle: RePEc:eee:jmvana:v:12:y:1982:i:2:p:306-315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(82)90022-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barman, Kalyan & Upadhye, Neelesh S., 2022. "On Brascamp–Lieb and Poincaré type inequalities for generalized tempered stable distribution," Statistics & Probability Letters, Elsevier, vol. 189(C).
    2. Goodarzi, F. & Amini, M. & Mohtashami Borzadaran, G.R., 2016. "On upper bounds for the variance of functions of the inactivity time," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 62-71.
    3. Giorgos Afendras & Vassilis Papathanasiou, 2014. "A note on a variance bound for the multinomial and the negative multinomial distribution," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(3), pages 179-183, April.
    4. Tang, Hsiu-Khuern & See, Chuen-Teck, 2009. "Variance inequalities using first derivatives," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1277-1281, May.
    5. Papadatos, N. & Papathanasiou, V., 1998. "Variational Inequalities for Arbitrary Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 154-168, November.
    6. Salinelli, Ernesto, 2009. "Nonlinear principal components, II: Characterization of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 652-660, April.
    7. Wei, Zhengyuan & Zhang, Xinsheng, 2008. "A matrix version of Chernoff inequality," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1823-1825, September.
    8. Wei, Zhengyuan & Zhang, Xinsheng, 2009. "Covariance matrix inequalities for functions of Beta random variables," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 873-879, April.
    9. R. Korwar, 1991. "On characterizations of distributions by mean absolute deviation and variance bounds," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 287-295, June.
    10. Giorgos Afendras, 2013. "Unified extension of variance bounds for integrated Pearson family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 687-702, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:12:y:1982:i:2:p:306-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.