IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i4p462-467.html
   My bibliography  Save this article

A variable bandwidth selector in multivariate kernel density estimation

Author

Listed:
  • Wu, Tiee-Jian
  • Chen, Ching-Fu
  • Chen, Huang-Yu

Abstract

Based on a random sample of size n from an unknown d-dimensional density f, the problem of selecting the variable (or adaptive) bandwidth in kernel estimation of f is investigated. The common strategy is to express the variable bandwidth at each observation as the product of a local bandwidth factor and a global smoothing parameter. For selecting the local bandwidth factor a method based on cluster analysis is proposed. This method is direct and intuitively appealing. For selecting the global smoothing parameter a method that is an adaptation of the frequency domain approach of selecting the fixed bandwidth in Wu and Tsai [2004. Root n bandwidths selectors in multivariate kernel density estimation. Probab. Theory Related Fields 129, 537-558] is used. For d=1 and 2, extensive simulation studies have been done to compare the performance of our selector with the selectors of Abramson [1982. On bandwidth variation in kernel estimates--a square root law. Ann. Statist. 10, 1217-1223] and Sain and Scott [1996. On locally adaptive density estimation. J. Amer. Statist. Assoc. 91, 1525-1534] and Sain [2002. Multivariate locally adaptive density estimation. Comput. Statist. Data Anal. 39, 165-186], and the excellent performance of our selector at practical sample sizes is clearly demonstrated.

Suggested Citation

  • Wu, Tiee-Jian & Chen, Ching-Fu & Chen, Huang-Yu, 2007. "A variable bandwidth selector in multivariate kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 462-467, February.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:4:p:462-467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00266-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Jones & I. McKay & T. Hu, 1994. "Variable location and scale kernel density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 521-535, September.
    2. Sain, Stephan R., 2002. "Multivariate locally adaptive density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 165-186, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    2. Xijian Hu & Yaori Lu & Huiguo Zhang & Haijun Jiang & Qingdong Shi, 2021. "Selection of the Bandwidth Matrix in Spatial Varying Coefficient Models to Detect Anisotropic Regression Relationships," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    3. David Pitt & Montserrat Guillén, 2010. "An introduction to parametric and non-parametric models for bivariate positive insurance claim severity distributions," Working Papers XREAP2010-03, Xarxa de Referència en Economia Aplicada (XREAP), revised Mar 2010.
    4. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    5. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    6. Yi Jin & Yulin He & Defa Huang, 2021. "An Improved Variable Kernel Density Estimator Based on L 2 Regularization," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    7. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    8. Bolancé, Catalina & Guillén, Montserrat & Nielsen, Jens Perch, 2008. "Inverse beta transformation in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1757-1764, September.
    9. Mohsen Arefi & Reinhard Viertl & S. Taheri, 2012. "Fuzzy density estimation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 5-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    2. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    3. Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers 15/13, Institute for Fiscal Studies.
    4. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    5. Battey, Heather & Linton, Oliver, 2014. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 43-67.
    6. Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers 41/13, Institute for Fiscal Studies.
    7. Stefano Magrini, 2007. "Analysing Convergence through the Distribution Dynamics Approach: Why and how?," Working Papers 2007_13, Department of Economics, University of Venice "Ca' Foscari".
    8. Subbiah, Mohan & Fabozzi, Frank J., 2016. "Hedge fund allocation: Evaluating parametric and nonparametric forecasts using alternative portfolio construction techniques," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 189-201.
    9. Dongik Jang & Hee-Seok Oh & Philippe Naveau, 2017. "Identifying local smoothness for spatially inhomogeneous functions," Computational Statistics, Springer, vol. 32(3), pages 1115-1138, September.
    10. James Taylor & Jochen Einbeck, 2013. "Challenging the curse of dimensionality in multivariate local linear regression," Computational Statistics, Springer, vol. 28(3), pages 955-976, June.
    11. Alexander Hohl & Wenwu Tang & Irene Casas & Xun Shi & Eric Delmelle, 2022. "Detecting space–time patterns of disease risk under dynamic background population," Journal of Geographical Systems, Springer, vol. 24(3), pages 389-417, July.
    12. Hall, Peter & Turlach, Berwin A., 1999. "Reducing bias in curve estimation by use of weights," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 67-86, March.
    13. Mohan Subbiah & Frank J Fabozzi, 2016. "Equity style allocation: A nonparametric approach," Journal of Asset Management, Palgrave Macmillan, vol. 17(3), pages 141-164, May.
    14. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    15. Marshall, Jonathan C. & Hazelton, Martin L., 2010. "Boundary kernels for adaptive density estimators on regions with irregular boundaries," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 949-963, April.
    16. Berlinet, Alain & Biau, Gérard & Rouvière, Laurent, 2005. "Optimal L1 bandwidth selection for variable kernel density estimates," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 116-128, September.
    17. Nicholas Rohde & Ross Guest, 2018. "Multidimensional Inequality Across Three Developed Countries," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 64(3), pages 576-591, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:4:p:462-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.