IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i4p949-963.html
   My bibliography  Save this article

Boundary kernels for adaptive density estimators on regions with irregular boundaries

Author

Listed:
  • Marshall, Jonathan C.
  • Hazelton, Martin L.

Abstract

In some applications of kernel density estimation the data may have a highly non-uniform distribution and be confined to a compact region. Standard fixed bandwidth density estimates can struggle to cope with the spatially variable smoothing requirements, and will be subject to excessive bias at the boundary of the region. While adaptive kernel estimators can address the first of these issues, the study of boundary kernel methods has been restricted to the fixed bandwidth context. We propose a new linear boundary kernel which reduces the asymptotic order of the bias of an adaptive density estimator at the boundary, and is simple to implement even on an irregular boundary. The properties of this adaptive boundary kernel are examined theoretically. In particular, we demonstrate that the asymptotic performance of the density estimator is maintained when the adaptive bandwidth is defined in terms of a pilot estimate rather than the true underlying density. We examine the performance for finite sample sizes numerically through analysis of simulated and real data sets.

Suggested Citation

  • Marshall, Jonathan C. & Hazelton, Martin L., 2010. "Boundary kernels for adaptive density estimators on regions with irregular boundaries," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 949-963, April.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:949-963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00165-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amatulli, Giuseppe & Peréz-Cabello, Fernando & de la Riva, Juan, 2007. "Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty," Ecological Modelling, Elsevier, vol. 200(3), pages 321-333.
    2. H. G. Müller & U. Stadtmüller, 1999. "Multivariate boundary kernels and a continuous least squares principle," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 439-458, April.
    3. Ezcurra, Roberto, 2007. "Is there cross-country convergence in carbon dioxide emissions?," Energy Policy, Elsevier, vol. 35(2), pages 1363-1372, February.
    4. Sain, Stephan R., 2002. "Multivariate locally adaptive density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 165-186, April.
    5. Hazelton, Martin L. & Marshall, Jonathan C., 2009. "Linear boundary kernels for bivariate density estimation," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 999-1003, April.
    6. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    7. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    2. repec:jss:jstsof:39:i01 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    4. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    5. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    6. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
    7. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    8. Zhang, Shunpu, 2010. "A note on the performance of the gamma kernel estimators at the boundary," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 548-557, April.
    9. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    10. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    11. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    12. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    13. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    14. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
    15. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    16. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.
    17. Renault, Olivier & Scaillet, Olivier, 2004. "On the way to recovery: A nonparametric bias free estimation of recovery rate densities," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2915-2931, December.
    18. Mohammadi, Faezeh & Izadi, Muhyiddin & Lai, Chin-Diew, 2016. "On testing whether burn-in is required under the long-run average cost," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 217-224.
    19. Marchant, Carolina & Bertin, Karine & Leiva, Víctor & Saulo, Helton, 2013. "Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 1-15.
    20. Ané, Thierry & Métais, Carole, 2009. "The distribution of realized variances: Marginal behaviors, asymmetric dependence and contagion effects," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 134-150, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:949-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.