IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i1p75-82.html
   My bibliography  Save this article

Asymptotic efficiency of the ordinary least-squares estimator for sur models with integrated regressors

Author

Listed:
  • Shin, Dong Wan
  • Joon Kim, Han
  • Jhee, Won-Chul

Abstract

For seemingly unrelated regression (SUR) models with integrated regressors, two sufficient conditions are identified, under which the ordinary least-squares estimator (OLSE) is asymptotically efficient. The first condition is that every pair of regressor processes are cointegrated in a specific way that one regressor is a linear combination of the other regressor up to a zero-mean stationary error and the second condition is that, for every pair of regressor processes, the pair of error processes deriving the regressor processes have zero long-run covariance.

Suggested Citation

  • Shin, Dong Wan & Joon Kim, Han & Jhee, Won-Chul, 2007. "Asymptotic efficiency of the ordinary least-squares estimator for sur models with integrated regressors," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 75-82, January.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:1:p:75-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00197-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Torous & Rossen Valkanov & Shu Yan, 2004. "On Predicting Stock Returns with Nearly Integrated Explanatory Variables," The Journal of Business, University of Chicago Press, vol. 77(4), pages 937-966, October.
    2. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    3. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    4. Shin, Dong Wan & Oh, Man Suk, 2002. "Asymptotic Efficiency Of The Ordinary Least Squares Estimator For Regressions With Unstable Regressors," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1121-1138, October.
    5. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    6. Moon, Hyungsik R., 1999. "A note on fully-modified estimation of seemingly unrelated regressions models with integrated regressors," Economics Letters, Elsevier, vol. 65(1), pages 25-31, October.
    7. Shin, Dong Wan & Oh, Man-Suk, 2004. "Fully modified semiparametric GLS estimation for regressions with nonstationary seasonal regressors," Journal of Econometrics, Elsevier, vol. 122(2), pages 247-280, October.
    8. Kramer, Walter & Hassler, Uwe, 1998. "Limiting efficiency of OLS vs. GLS when regressors are fractionally integrated," Economics Letters, Elsevier, vol. 60(3), pages 285-290, September.
    9. Li, Kai, 1999. "Testing Symmetry and Proportionality in PPP: A Panel-Data Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 409-418, October.
    10. Baltagi, Badi H., 1988. "The Efficiency of OLS in a Seemingly Unrelated Regressions Model," Econometric Theory, Cambridge University Press, vol. 4(03), pages 536-537, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Dong Wan & Oh, Man-Suk, 2004. "Fully modified semiparametric GLS estimation for regressions with nonstationary seasonal regressors," Journal of Econometrics, Elsevier, vol. 122(2), pages 247-280, October.
    2. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    3. Vasco Gabriel, 2003. "Tests for the Null Hypothesis of Cointegration: A Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 411-435.
    4. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    5. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    6. Choi, In & Kurozumi, Eiji, 2012. "Model selection criteria for the leads-and-lags cointegrating regression," Journal of Econometrics, Elsevier, vol. 169(2), pages 224-238.
    7. Martin Wagner & Dominik Wied, 2017. "Consistent Monitoring of Cointegrating Relationships: The US Housing Market and the Subprime Crisis," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 960-980, November.
    8. Nikolay Gospodinov & Ian Irvine, 2005. "A ‘long march’ perspective on tobacco use in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 366-393, May.
    9. G. Everaert, 2007. "Estimating Long-Run Relationships between Observed Integrated Variables by Unobserved Component Methods," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/452, Ghent University, Faculty of Economics and Business Administration.
    10. Kuo, Biing-Shen, 1998. "Test for partial parameter instability in regressions with I(1) processes," Journal of Econometrics, Elsevier, vol. 86(2), pages 337-368, June.
    11. de Mello Luiz & Moccero Diego & Mogliani Matteo, 2013. "Do Latin American Central Bankers Behave Non-Linearly? The Experiences of Brazil, Chile, Colombia and Mexico," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 141-165, April.
    12. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    13. Norah Al-Ballaa, 2005. "Test for cointegration based on two-stage least squares," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 707-713.
    14. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    15. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    16. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    17. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    18. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    19. Quintos, Carmela E., 1998. "Analysis of cointegration vectors using the GMM approach," Journal of Econometrics, Elsevier, vol. 85(1), pages 155-188, July.
    20. Marcelo Soto & Salvador Valdés, 1996. "¿Es el Control Selectivo de Capitales Efectivo en Chile? Su Efecto sobre el Tipo de Cambio Real," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 33(98), pages 77-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:1:p:75-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.