IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i13p1439-1448.html
   My bibliography  Save this article

Generalized least squares estimation for explosive AR(1) processes with conditionally heteroscedastic errors

Author

Listed:
  • Hwang, S.Y.
  • Kim, S.
  • Lee, S.D.
  • Basawa, I.V.

Abstract

This article is concerned with explosive AR(1) processes generated by conditionally heteroscedastic errors. Conditional least squares as well as generalized least squares estimation for autoregressive parameter are discussed and relevant limiting distributions are expressed as products of certain random variables. These results can be viewed as generalizations of classical results obtained for the standard explosive AR(1) model with i.i.d. errors (cf. [Fuller, W.A., 1996. Introduction to Statistical Time Series, second ed. Wiley, New York (Chapter 10)]). The model under consideration accommodates diverse conditionally heteroscedastic processes including Engle [1982. Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 987-1008]'s ARCH, threshold-ARCH and beta-ARCH processes. Based on residuals, least squares estimation for parameters appearing in the conditional variance is also discussed and is illustrated for various ARCH type processes.

Suggested Citation

  • Hwang, S.Y. & Kim, S. & Lee, S.D. & Basawa, I.V., 2007. "Generalized least squares estimation for explosive AR(1) processes with conditionally heteroscedastic errors," Statistics & Probability Letters, Elsevier, vol. 77(13), pages 1439-1448, July.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:13:p:1439-1448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00074-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    2. Hwang, S. Y. & Kim, Tae Yoon, 2004. "Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 295-314, April.
    3. Li, C W & Li, W K, 1996. "On a Double-Threshold Autoregressive Heteroscedastic Time Series Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 253-274, May-June.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, S.Y., 2013. "Arbitrary initial values and random norm for explosive AR(1) processes generated by stationary errors," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 127-134.
    2. Christoph P. Kustosz & Anne Leucht & Christine H. MÜller, 2016. "Tests Based on Simplicial Depth for AR(1) Models With Explosion," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 763-784, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, S.Y. & Baek, J.S. & Park, J.A. & Choi, M.S., 2010. "Explosive volatilities for threshold-GARCH processes generated by asymmetric innovations," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 26-33, January.
    2. Wang, Guochang & Zhu, Ke & Li, Guodong & Li, Wai Keung, 2022. "Hybrid quantile estimation for asymmetric power GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 264-284.
    3. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    4. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    5. Hwang, S. Y. & Kim, Tae Yoon, 2004. "Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 295-314, April.
    6. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    7. Boubacar Maïnassara, Y. & Kadmiri, O. & Saussereau, B., 2022. "Estimation of multivariate asymmetric power GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    8. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
    9. Hwang, S. Y. & Basawa, I. V., 2004. "Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 209-220, July.
    10. Guochang Wang & Ke Zhu & Guodong Li & Wai Keung Li, 2019. "Hybrid quantile estimation for asymmetric power GARCH models," Papers 1911.09343, arXiv.org.
    11. Qiang Xia & Heung Wong & Jinshan Liu & Rubing Liang, 2017. "Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 353-372, October.
    12. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    13. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    14. Kononovicius, A. & Ruseckas, J., 2015. "Nonlinear GARCH model and 1/f noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 74-81.
    15. Marcel Bräutigam & Marie Kratz, 2019. "Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes," Working Papers hal-02176276, HAL.
    16. Jamal Bouoiyour & Refk Selmi, 2015. "Exchange volatility and export performance in Egypt: New insights from wavelet decomposition and optimal GARCH model," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 24(2), pages 201-227, March.
    17. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    18. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    19. Franke, Jurgen & Neumann, Michael H. & Stockis, Jean-Pierre, 2004. "Bootstrapping nonparametric estimators of the volatility function," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 189-218.
    20. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:13:p:1439-1448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.