IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i4p340-348.html
   My bibliography  Save this article

Wild bootstrap estimation in partially linear models with heteroscedasticity

Author

Listed:
  • You, Jinhong
  • Chen, Gemai

Abstract

This paper uses the wild bootstrap technique in the estimation of a heteroscedastic partially linear regression model. We show that this approach provides reliable approximation to the asymptotic distribution of the semiparametric least-square estimators of the linear regression coefficients and consistent estimators of the asymptotic covariance matrices even when the error variances are unequal. In comparison, this robustness property is not shared by the bootstrap estimation proposed in Liang et al. (2000. Bootstrap approximation in a partially linear regression model. J. Statist. Plann. Inference, 91, 413-426).

Suggested Citation

  • You, Jinhong & Chen, Gemai, 2006. "Wild bootstrap estimation in partially linear models with heteroscedasticity," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 340-348, February.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:4:p:340-348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00304-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, Scott A. & Truong, Young K., 1997. "Local Linear Estimation in Partly Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 1-19, January.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    2. Zhou, Xing-cai & Lin, Jin-guan, 2013. "Asymptotic properties of wavelet estimators in semiparametric regression models under dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 251-270.
    3. You, Jinhong & Chen, Gemai, 2006. "Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 324-341, February.
    4. Liang, Hua, 2006. "Estimation in partially linear models and numerical comparisons," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 675-687, February.
    5. Yunlu Jiang, 2015. "Robust estimation in partially linear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2497-2508, November.
    6. Gao, Jiti & Tong, Howell & Wolff, Rodney, 2002. "Model Specification Tests in Nonparametric Stochastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 324-359, November.
    7. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Przystalski, Marcin, 2014. "Estimation of the covariance matrix in multivariate partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 380-385.
    9. Lan, Wei & Ding, Yue & Fang, Zheng & Fang, Kuangnan, 2016. "Testing covariates in high dimension linear regression with latent factors," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 25-37.
    10. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    11. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    12. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    13. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    14. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    15. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    16. Aneiros-Perez, G. & Vilar-Fernandez, J.M., 2008. "Local polynomial estimation in partial linear regression models under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2757-2777, January.
    17. Jun Zhang & Yao Yu & Li-Xing Zhu & Hua Liang, 2013. "Partial linear single index models with distortion measurement errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 237-267, April.
    18. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Dette, Holger & Marchlewski, Mareen, 2007. "A test for the parametric form of the variance function in apartial linear regression model," Technical Reports 2007,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Xingcai Zhou & Xinsheng Liu & Shuhe Hu, 2010. "Moment consistency of estimators in partially linear models under NA samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(3), pages 415-432, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:4:p:340-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.