IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i3p244-254.html
   My bibliography  Save this article

Penalized likelihood hazard estimation: Efficient approximation and Bayesian confidence intervals

Author

Listed:
  • Du, Pang
  • Gu, Chong

Abstract

Penalized likelihood method can be used for hazard estimation with lifetime data that are right-censored, left-truncated, and possibly with covariates. In this article, we are concerned with more scalable computation of the method and with the derivation and assessment of certain interval estimates. The asymptotic convergence rates are preserved when the estimation is restricted to certain q-dimensional spaces with q increasing at a much slower rate than the sample size n, and simulation studies are performed to determine default values of q for practical use; the computation cost is of the order O(nq2). Through a quadratic approximation of the log likelihood, approximate Bayesian confidence intervals can be derived for log hazard, and empirical studies are conducted to assess their properties. The techniques are implemented in open-source R code and real-data example is presented to illustrate the applications of the techniques through the use of the software.

Suggested Citation

  • Du, Pang & Gu, Chong, 2006. "Penalized likelihood hazard estimation: Efficient approximation and Bayesian confidence intervals," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 244-254, February.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:3:p:244-254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00293-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Young‐Ju Kim & Chong Gu, 2004. "Smoothing spline Gaussian regression: more scalable computation via efficient approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 337-356, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Young-Ju, 2011. "A comparative study of nonparametric estimation in Weibull regression: A penalized likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1884-1896, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    2. Marcillo-Delgado, J.C. & Ortego, M.I. & Pérez-Foguet, A., 2019. "A compositional approach for modelling SDG7 indicators: Case study applied to electricity access," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 388-398.
    3. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    4. Massimiliano Mazzanti & Antonio Musolesi, 2011. "Income and time related effects in EKC," Working Papers 201105, University of Ferrara, Department of Economics.
    5. Zlatana Nenova & Jennifer Shang, 2022. "Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 259-280, January.
    6. Nathaniel E. Helwig, 2024. "Precise Tensor Product Smoothing via Spectral Splines," Stats, MDPI, vol. 7(1), pages 1-20, January.
    7. Geminiani, Elena & Marra, Giampiero & Moustaki, Irini, 2021. "Single and multiple-group penalized factor analysis: a trust-region algorithm approach with integrated automatic multiple tuning parameter selection," LSE Research Online Documents on Economics 108873, London School of Economics and Political Science, LSE Library.
    8. Kim, Young-Ju, 2013. "A partial spline approach for semiparametric estimation of varying-coefficient partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 181-187.
    9. Nathaniel E. Helwig, 2022. "Robust Permutation Tests for Penalized Splines," Stats, MDPI, vol. 5(3), pages 1-18, September.
    10. Longhi, C. & Musolesi, A. & Baumont, C., 2013. "Modeling the industrial dynamics of the European metropolitan areas during the process of economic integration: a semiparametric approach," Working Papers 2013-10, Grenoble Applied Economics Laboratory (GAEL).
    11. Elena Geminiani & Giampiero Marra & Irini Moustaki, 2021. "Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 65-95, March.
    12. Simon N. Wood, 2006. "Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1025-1036, December.
    13. Gu, Chong, 2014. "Smoothing Spline ANOVA Models: R Package gss," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i05).
    14. Wojtyś, Magorzata & Marra, Giampiero & Radice, Rosalba, 2016. "Copula Regression Spline Sample Selection Models: The R Package SemiParSampleSel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i06).
    15. Eduardo L. Montoya, 2020. "On the Number of Independent Pieces of Information in a Functional Linear Model with a Scalar Response," Stats, MDPI, vol. 3(4), pages 1-16, November.
    16. Simon N. Wood & Mark V. Bravington & Sharon L. Hedley, 2008. "Soap film smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 931-955, November.
    17. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    18. Lauren N. Berry & Nathaniel E. Helwig, 2021. "Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines," Stats, MDPI, vol. 4(3), pages 1-24, September.
    19. Young-Ju Kim, 2010. "Semiparametric analysis for case-control studies: a partial smoothing spline approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1015-1025.
    20. Pang Du & Yihua Jiang & Yuedong Wang, 2011. "Smoothing Spline ANOVA Frailty Model for Recurrent Event Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1330-1339, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:3:p:244-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.