IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v62y2013icp181-187.html
   My bibliography  Save this article

A partial spline approach for semiparametric estimation of varying-coefficient partially linear models

Author

Listed:
  • Kim, Young-Ju

Abstract

A semiparametric method based on smoothing spline is proposed for the estimation of varying-coefficient partially linear models. A simple and efficient method is proposed, based on a partial spline technique with a lower-dimensional approximation to simultaneously estimate the varying-coefficient function and regression parameters. For interval inference, Bayesian confidence intervals were obtained based on the Bayes models for varying-coefficient functions. The performance of the proposed method is examined both through simulations and by applying it to Boston housing data.

Suggested Citation

  • Kim, Young-Ju, 2013. "A partial spline approach for semiparametric estimation of varying-coefficient partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 181-187.
  • Handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:181-187
    DOI: 10.1016/j.csda.2013.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000078
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi & Racine, Jeffrey S., 2010. "Smooth Varying-Coefficient Estimation And Inference For Qualitative And Quantitative Data," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1607-1637, December.
    2. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying‐coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80, February.
    3. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    4. Yingcun Xia, 2004. "Efficient estimation for semivarying-coefficient models," Biometrika, Biometrika Trust, vol. 91(3), pages 661-681, September.
    5. Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
    6. Young-Ju Kim, 2010. "Semiparametric analysis for case-control studies: a partial smoothing spline approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1015-1025.
    7. Young‐Ju Kim & Chong Gu, 2004. "Smoothing spline Gaussian regression: more scalable computation via efficient approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 337-356, May.
    8. R. L. Eubank & Chunfeng Huang & Y. Muñoz Maldonado & Naisyin Wang & Suojin Wang & R. J. Buchanan, 2004. "Smoothing spline estimation in varying‐coefficient models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 653-667, August.
    9. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    10. Robert T. Krafty & Phyllis A. Gimotty & David Holtz & George Coukos & Wensheng Guo, 2008. "Varying Coefficient Model with Unknown Within-Subject Covariance for Analysis of Tumor Growth Curves," Biometrics, The International Biometric Society, vol. 64(4), pages 1023-1031, December.
    11. Damla Şentürk & Hans-Georg Müller, 2008. "Generalized varying coefficient models for longitudinal data," Biometrika, Biometrika Trust, vol. 95(3), pages 653-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Binlei, 2018. "Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015," Journal of Development Economics, Elsevier, vol. 132(C), pages 18-31.
    2. Zhao, Yan-Yong & Lin, Jin-Guan & Xu, Pei-Rong & Ye, Xu-Guo, 2015. "Orthogonality-projection-based estimation for semi-varying coefficient models with heteroscedastic errors," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 204-221.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    2. Liu, Hefei & Song, Xinyuan & Zhang, Baoxue, 2022. "Varying-coefficient hidden Markov models with zero-effect regions," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    4. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    5. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
    6. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    7. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    8. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    9. Lam, Clifford & Fan, Jianqing, 2008. "Profile-kernel likelihood inference with diverging number of parameters," LSE Research Online Documents on Economics 31548, London School of Economics and Political Science, LSE Library.
    10. Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
    11. Senturk, Damla & Nguyen, Danh V., 2006. "Estimation in covariate-adjusted regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3294-3310, July.
    12. Jing Sun & Lu Lin, 2014. "Local rank estimation and related test for varying-coefficient partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 187-206, March.
    13. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    14. Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
    15. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    16. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
    17. Hu, Xuemei, 2017. "Semi-parametric inference for semi-varying coefficient panel data model with individual effects," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 262-281.
    18. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    19. Peixin Zhao & Liugen Xue, 2011. "Variable selection for varying coefficient models with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 231-245, September.
    20. Zhao, Weihua & Zhang, Riquan & Liu, Jicai & Hu, Hongchang, 2015. "Robust adaptive estimation for semivarying coefficient models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 132-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:181-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.