A new class of multivariate distributions: Scale mixture of Kotz-type distributions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arslan, Olcay, 2004. "Family of multivariate generalized t distributions," Journal of Multivariate Analysis, Elsevier, vol. 89(2), pages 329-337, May.
- Arellano-Valle, Reinaldo B. & Bolfarine, Heleno, 1995. "On some characterizations of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 25(1), pages 79-85, October.
- Kotz, Samuel & Nadarajah, Saralees, 2001. "Some extremal type elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 171-182, September.
- Kano, Y., 1994. "Consistency Property of Elliptic Probability Density Functions," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 139-147, October.
- Kotz, S. & Ostrovskii, I., 1994. "Characteristic Functions of a Class of Elliptic Distributions," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 164-178, April.
- Haro-López, Rubén A. & Smith, Adrian F. M., 1999. "On Robust Bayesian Analysis for Location and Scale Parameters," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 30-56, July.
- N. H. Bingham & Rudiger Kiesel, 2002. "Semi-parametric modelling in finance: theoretical foundations," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 241-250.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fung, Thomas & Seneta, Eugene, 2010. "Extending the multivariate generalised t and generalised VG distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 154-164, January.
- Díaz-García, José A. & Gutiérrez-Jáimez, Ramón, 2011. "Distributions of the compound and scale mixture of vector and spherical matrix variate elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 143-152, January.
- Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2008. "Multivariate Gram-Charlier Densities," MPRA Paper 29073, University Library of Munich, Germany.
- Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hashorva, Enkelejd, 2006. "On the regular variation of elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1427-1434, August.
- Yeshunying Wang & Chuancun Yin, 2021. "A New Class of Multivariate Elliptically Contoured Distributions with Inconsistency Property," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1377-1407, December.
- Liang, Jia-Juan & Bentler, Peter M., 1998. "Characterizations of some subclasses of spherical distributions," Statistics & Probability Letters, Elsevier, vol. 40(2), pages 155-164, September.
- Hashorva, Enkelejd, 2006. "On the multivariate Hüsler-Reiss distribution attracting the maxima of elliptical triangular arrays," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 2027-2035, December.
- Hashorva, Enkelejd, 2007. "Extremes of conditioned elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1583-1591, September.
- Yugu Xiao & Emiliano A. Valdez, 2015. "A Black-Litterman asset allocation model under Elliptical distributions," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 509-519, March.
- Landsman, Zinoviy & Neslehová, Johanna, 2008. "Stein's Lemma for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 912-927, May.
- Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
- Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Arellano-Valle, Reinaldo B., 2001. "On some characterizations of spherical distributions," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 227-232, October.
- Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Nabil Kazi-Tani & Didier Rullière, 2019. "On a construction of multivariate distributions given some multidimensional marginals," Post-Print hal-01575169, HAL.
- Gustavo Rocha & Reinaldo Arellano-Valle & Rosangela Loschi, 2015. "Maximum likelihood methods in a robust censored errors-in-variables model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 857-877, December.
- Klaus Müller & Wolf-Dieter Richter, 2019. "On p-generalized elliptical random processes," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-37, December.
- Trottini, Mario & Muralidhar, Krish & Sarathy, Rathindra, 2011. "Maintaining tail dependence in data shuffling using t copula," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 420-428, March.
- Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers 15/13, Institute for Fiscal Studies.
- Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
- Polonik, Wolfgang & Yao, Qiwei, 2008. "Testing for multivariate volatility functions using minimum volume sets and inverse regression," Journal of Econometrics, Elsevier, vol. 147(1), pages 151-162, November.
- Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2021. "A formulation for continuous mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
More about this item
Keywords
Kotz-type distribution Generalized t distribution Inverse generalized gamma distribution Scale mixture distribution t distribution Elliptically contoured distribution;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:75:y:2005:i:1:p:18-28. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.