IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v40y1998i2p155-164.html
   My bibliography  Save this article

Characterizations of some subclasses of spherical distributions

Author

Listed:
  • Liang, Jia-Juan
  • Bentler, Peter M.

Abstract

Three types of characterizations for two subclasses of spherical distributions are presented. Within the class of spherical distributions, we prove that the symmetric Kotz-type distributions (under some restricted parameters) and the symmetric Pearson-type II distributions are characterized by certain marginal and conditional distributions, and the distributions of some quadratic forms, respectively.

Suggested Citation

  • Liang, Jia-Juan & Bentler, Peter M., 1998. "Characterizations of some subclasses of spherical distributions," Statistics & Probability Letters, Elsevier, vol. 40(2), pages 155-164, September.
  • Handle: RePEc:eee:stapro:v:40:y:1998:i:2:p:155-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00084-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arellano-Valle, Reinaldo B. & Bolfarine, Heleno, 1995. "On some characterizations of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 25(1), pages 79-85, October.
    2. Kano, Y., 1994. "Consistency Property of Elliptic Probability Density Functions," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 139-147, October.
    3. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeshunying Wang & Chuancun Yin, 2021. "A New Class of Multivariate Elliptically Contoured Distributions with Inconsistency Property," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1377-1407, December.
    2. Arellano-Valle, Reinaldo B., 2001. "On some characterizations of spherical distributions," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 227-232, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arellano-Valle, Reinaldo B., 2001. "On some characterizations of spherical distributions," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 227-232, October.
    2. Battey, Heather & Linton, Oliver, 2014. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 43-67.
    3. Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers 15/13, Institute for Fiscal Studies.
    4. Fotopoulos, Stergios B., 2017. "Symmetric Gaussian mixture distributions with GGC scales," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 185-194.
    5. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    6. Arellano-Valle, R.B. & del Pino, G. & Iglesias, P., 2006. "Bayesian inference in spherical linear models: robustness and conjugate analysis," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 179-197, January.
    7. Yeshunying Wang & Chuancun Yin, 2021. "A New Class of Multivariate Elliptically Contoured Distributions with Inconsistency Property," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1377-1407, December.
    8. Hashorva, Enkelejd, 2006. "On the regular variation of elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1427-1434, August.
    9. Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers 41/13, Institute for Fiscal Studies.
    10. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    11. Hashorva, Enkelejd, 2006. "On the multivariate Hüsler-Reiss distribution attracting the maxima of elliptical triangular arrays," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 2027-2035, December.
    12. Vidal, Ignacio & Arellano-Valle, Reinaldo B., 2010. "Bayesian inference for dependent elliptical measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2587-2597, November.
    13. Arslan, Olcay, 2005. "A new class of multivariate distributions: Scale mixture of Kotz-type distributions," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 18-28, November.
    14. Hashorva, Enkelejd, 2008. "Tail asymptotic results for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 158-164, August.
    15. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    16. D. Sornette & P. Simonetti & J.V. Andersen, 1999. ""Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions," Finance 9902004, University Library of Munich, Germany.
    17. Victor Korolev, 2020. "Some Properties of Univariate and Multivariate Exponential Power Distributions and Related Topics," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    18. Maume-Deschamps, V. & Rullière, D. & Usseglio-Carleve, A., 2017. "Quantile predictions for elliptical random fields," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 1-17.
    19. Yugu Xiao & Emiliano A. Valdez, 2015. "A Black-Litterman asset allocation model under Elliptical distributions," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 509-519, March.
    20. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:40:y:1998:i:2:p:155-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.