IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v72y2005i4p333-343.html
   My bibliography  Save this article

A nonparametric sequential test with power 1 for the ruin probability in some risk models

Author

Listed:
  • Conti, Pier Luigi

Abstract

In this paper we consider a nonparametric sequential test of power one for the Andersen risk model. The main motivation comes from applications to insurance, and in particular to the sequential control of the ruin probability of an insurance company. The properties of the proposed test are studied. In particular, it is shown that, under the alternative, both the stopping time of the test and its mean value are finite. Finally, approximations for the size of the test and for the expected value of the stopping time are provided.

Suggested Citation

  • Conti, Pier Luigi, 2005. "A nonparametric sequential test with power 1 for the ruin probability in some risk models," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 333-343, May.
  • Handle: RePEc:eee:stapro:v:72:y:2005:i:4:p:333-343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00074-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelhakim Necir, 2006. "A Nonparametric Sequential Test with Power 1 for the Mean of Lévy-stable Laws with Infinite Variance," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 321-343, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    2. Grandell, Jan, 2000. "Simple approximations of ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 157-173, May.
    3. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    4. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    5. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    6. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    7. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    8. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    9. Albrecher, Hansjörg & Kortschak, Dominik, 2009. "On ruin probability and aggregate claim representations for Pareto claim size distributions," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 362-373, December.
    10. Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
    11. Ramsay, Colin M., 2003. "A solution to the ruin problem for Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 109-116, August.
    12. Wang, Dingcheng & Chen, Pingyan & Su, Chun, 2007. "The supremum of random walk with negatively associated and heavy-tailed steps," Statistics & Probability Letters, Elsevier, vol. 77(13), pages 1403-1412, July.
    13. Baltru-nas, Aleksandras, 2005. "Second order behaviour of ruin probabilities in the case of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 485-498, June.
    14. Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
    15. Kortschak, Dominik & Albrecher, Hansjörg, 2010. "An asymptotic expansion for the tail of compound sums of Burr distributed random variables," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 612-620, April.
    16. Nagaev, A. & Tsitsiashvili, G., 2006. "Tail asymptotics of the nth convolution of super-exponential distributions," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 861-870, May.
    17. Grandits, Peter, 2004. "A Karamata-type theorem and ruin probabilities for an insurer investing proportionally in the stock market," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 297-305, April.
    18. Asmussen, Søren & Klüppelberg, Claudia & Sigman, Karl, 1999. "Sampling at subexponential times, with queueing applications," Stochastic Processes and their Applications, Elsevier, vol. 79(2), pages 265-286, February.
    19. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.
    20. Kalashnikov, Vladimir & Norberg, Ragnar, 2002. "Power tailed ruin probabilities in the presence of risky investments," Stochastic Processes and their Applications, Elsevier, vol. 98(2), pages 211-228, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:4:p:333-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.