IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v71y2005i4p323-335.html
   My bibliography  Save this article

Chebyshev-type inequalities for scale mixtures

Author

Listed:
  • Csiszar, Villo
  • Móri, Tamás F.
  • Székely, Gábor J.

Abstract

For important classes of symmetrically distributed random variables X the smallest constants C[alpha] are computed on the right-hand side of Chebyshev's inequality P(X[greater-or-equal, slanted]t)[less-than-or-equals, slant]C[alpha]EX[alpha]/t[alpha]. For example if the distribution of X is a scale mixture of centered normal random variables, then the smallest C2=0.331... and, as [alpha]-->[infinity], the smallest C[alpha][downwards arrow]0 and .

Suggested Citation

  • Csiszar, Villo & Móri, Tamás F. & Székely, Gábor J., 2005. "Chebyshev-type inequalities for scale mixtures," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 323-335, March.
  • Handle: RePEc:eee:stapro:v:71:y:2005:i:4:p:323-335
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00004-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Sellke, 1996. "Generalized gauss-chebyshev inequalities for unimodal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 43(1), pages 107-121, December.
    2. N. H. Bingham & Rudiger Kiesel, 2002. "Semi-parametric modelling in finance: theoretical foundations," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 241-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adell, José A. & Lekuona, Alberto, 2006. "Every random variable satisfies a certain nontrivial integrability condition," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1603-1606, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    2. Jeroen Rombouts & Marno Verbeek, 2009. "Evaluating portfolio Value-at-Risk using semi-parametric GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 737-745.
    3. Dipierro, Serena & Valdinoci, Enrico, 2021. "Description of an ecological niche for a mixed local/nonlocal dispersal: An evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    4. Carol Alexander & Andrew Scourse, 2004. "Bivariate normal mixture spread option valuation," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 637-648.
    5. Hosseini, Reshad & Sra, Suvrit & Theis, Lucas & Bethge, Matthias, 2016. "Inference and mixture modeling with the Elliptical Gamma Distribution," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 29-43.
    6. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    7. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    8. Arslan, Olcay, 2005. "A new class of multivariate distributions: Scale mixture of Kotz-type distributions," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 18-28, November.
    9. Mark Flood & George Korenko, 2013. "Systematic Scenario Selection," Working Papers 13-02, Office of Financial Research, US Department of the Treasury.
    10. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    11. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    12. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2010. "BL-GARCH model with elliptical distributed innovations," Post-Print halshs-00368340, HAL.
    13. Szulga, Jerzy, 2009. "On selfdecomposable Stieltjes transforms," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 748-752, March.
    14. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2008. "Exact Maximum Likelihood estimation for the BL-GARCH model under elliptical distributed innovations," Post-Print halshs-00270719, HAL.
    15. Abel Elizalde, 2006. "Credit Risk Models I: Default Correlation in Intensity Models," Working Papers wp2006_0605, CEMFI.
    16. Fima C. Klebaner & Zinoviy Landsman, 2009. "Option Pricing for Log-Symmetric Distributions of Returns," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 339-357, September.
    17. Landsman, Zinoviy, 2006. "On the generalization of Stein's Lemma for elliptical class of distributions," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1012-1016, May.
    18. Polonik, Wolfgang & Yao, Qiwei, 2008. "Testing for multivariate volatility functions using minimum volume sets and inverse regression," Journal of Econometrics, Elsevier, vol. 147(1), pages 151-162, November.
    19. Yang, Xinxin & Zheng, Xinghua & Chen, Jiaqi, 2021. "Testing high-dimensional covariance matrices under the elliptical distribution and beyond," Journal of Econometrics, Elsevier, vol. 221(2), pages 409-423.
    20. Mahmoud Hamada & Emiliano A. Valdez, 2008. "CAPM and Option Pricing With Elliptically Contoured Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 387-409, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:4:p:323-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.