IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v71y2005i1p39-46.html
   My bibliography  Save this article

The moment of inertia and the linear discriminant function

Author

Listed:
  • Reyen, Salem S.
  • Miller, John J.

Abstract

In this note, we show that the characteristic vector of the moment of inertia matrix associated with the first or last characteristic root corresponds to the best linear discriminant function in the situation where the data is a mixture of two multivariate normal distributions with proportional covariance matrices. This result may prove useful as a part of many outlier detection methods. We also describe a small simulation study which illustrates the computational efficiency of the new method.

Suggested Citation

  • Reyen, Salem S. & Miller, John J., 2005. "The moment of inertia and the linear discriminant function," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 39-46, January.
  • Handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:39-46
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00282-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianthi Markatou, 2000. "Mixture Models, Robustness, and the Weighted Likelihood Methodology," Biometrics, The International Biometric Society, vol. 56(2), pages 483-486, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salem Reyen & John Miller & Edward Wegman, 2009. "Separating a mixture of two normals with proportional covariances," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(3), pages 297-314, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    2. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    3. Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.
    4. Salem Reyen & John Miller & Edward Wegman, 2009. "Separating a mixture of two normals with proportional covariances," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(3), pages 297-314, November.
    5. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.
    6. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    7. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    8. Bagkavos, Dimitrios & Patil, Prakash N., 2023. "Goodness-of-fit testing for normal mixture densities," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    9. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.
    10. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    11. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    12. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    13. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    14. J. A. Cuesta‐Albertos & C. Matrán & A. Mayo‐Iscar, 2008. "Robust estimation in the normal mixture model based on robust clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 779-802, September.
    15. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    16. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    17. John P. Saldanha & Bradley S. Price & Douglas J. Thomas, 2023. "A nonparametric approach for setting safety stock levels," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1150-1168, April.
    18. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    19. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    20. Alessio Farcomeni & Luca Greco, 2015. "S-estimation of hidden Markov models," Computational Statistics, Springer, vol. 30(1), pages 57-80, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:71:y:2005:i:1:p:39-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.