IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v65y2003i2p127-137.html
   My bibliography  Save this article

A note on the asymptotic distribution of the maxima in disaggregated time-series models

Author

Listed:
  • Scotto, M. G.

Abstract

This work is motivated by the desire to model extremes of weighted averages taken over different time scales. We focus on the extremal properties of disaggregated time series. The maximum limiting distribution is obtained.

Suggested Citation

  • Scotto, M. G., 2003. "A note on the asymptotic distribution of the maxima in disaggregated time-series models," Statistics & Probability Letters, Elsevier, vol. 65(2), pages 127-137, November.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:2:p:127-137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00248-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Daniel O. Stram & William W. S. Wei, 1986. "Temporal Aggregation In The Arima Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 279-292, July.
    3. M. E. Robinson & J. A. Tawn, 2000. "Extremal analysis of processes sampled at different frequencies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Chan, Wai-Sum & Chan, Yin-Ting, 2008. "A note on the autocorrelation properties of temporally aggregated Markov switching Gaussian models," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 728-735, April.
    3. Maria Nikoloudaki & Dikaios Tserkezos, 2008. "Temporal Aggregation Effects in Choosing the Optimal Lag Order in Stable ARMA Models: Some Monte Carlo Results," Working Papers 0822, University of Crete, Department of Economics.
    4. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    5. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    6. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    7. Chan, Wai-Sum, 2022. "On temporal aggregation of some nonlinear time-series models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 38-49.
    8. Yang, Minxian, 2019. "The risk return relationship: Evidence from index returns and realised variances," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    9. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    10. Wai‐Sum Chan & Li‐Xin Zhang & Siu Hung Cheung, 2009. "Temporal aggregation of Markov‐switching financial return models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 359-383, May.
    11. repec:hal:journl:peer-00815563 is not listed on IDEAS
    12. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    13. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    14. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    16. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    17. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    18. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    19. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    20. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    21. Darmoul Mokhtar & Nizar Harrathi, 2007. "Monetary information arrivals and intraday exchange rate volatility: a comparison of the GARCH and the EGARCH models," Post-Print halshs-00174996, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:2:p:127-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.