Multisample tests for scale based on kernel density estimation
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
- Jones, M. C. & Sheather, S. J., 1991. "Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 11(6), pages 511-514, June.
- Ahmad, Ibrahim A. & Li, Qi, 1997. "Testing independence by nonparametric kernel method," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 201-210, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
- Hall, Peter & Wolff, Rodney C. L., 1995. "Estimators of integrals of powers of density derivatives," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 105-110, August.
- Rudolf Grübel, 1994. "Estimation of density functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 67-75, March.
- Farmen, Mark & Marron, J. S., 1999. "An assessment of finite sample performance of adaptive methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 143-168, April.
- Dimitrios Bagkavos, 2011. "Local linear hazard rate estimation and bandwidth selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 1019-1046, October.
- Tenreiro, Carlos, 2003. "On the asymptotic normality of multistage integrated density derivatives kernel estimators," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 311-322, September.
- Hidehiko Ichimura & Oliver Linton, 2001.
"Asymptotic expansions for some semiparametric program evaluation estimators,"
CeMMAP working papers
04/01, Institute for Fiscal Studies.
- Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers CWP04/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ichimura, Hidehiko & Linton, Oliver, 2003. "Asymptotic expansions for some semiparametric program evaluation estimators," LSE Research Online Documents on Economics 2098, London School of Economics and Political Science, LSE Library.
- Hidehiko Ichimura & Oliver Linton, 2003. "Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators," STICERD - Econometrics Paper Series 451, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2017. "Bandwidth selection in kernel density estimation for interval-grouped data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 527-545, September.
- José E. Chacón & Carlos Tenreiro, 2012. "Exact and Asymptotically Optimal Bandwidths for Kernel Estimation of Density Functionals," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 523-548, September.
- Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
- Powell, James L. & Stoker, Thomas M., 1996.
"Optimal bandwidth choice for density-weighted averages,"
Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
- Powell, James L. & Stoker, Thomas M., 1992. "Optimal bandwidth choice for density-weighted averages," Working papers 3424-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Saavedra, Ángeles & Cao, Ricardo, 1999. "Rate of convergence of a convolution-type estimator of the marginal density of a MA(1) process," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 129-155, April.
- Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
- Tiee-Jian Wu & Chih-Yuan Hsu & Huang-Yu Chen & Hui-Chun Yu, 2014. "Root $$n$$ n estimates of vectors of integrated density partial derivative functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 865-895, October.
- Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
- Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
- Wu, Edmond H.C. & Yu, Philip L.H. & Li, W.K., 2009. "A smoothed bootstrap test for independence based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2524-2536, May.
- Vexler, Albert & Gao, Xinyu & Zhou, Jiaojiao, 2023. "How to implement signed-rank wilcox.test() type procedures when a center of symmetry is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Støve, Bård & Tjøstheim, Dag, 2007. "A Convolution Estimator for the Density of Nonlinear Regression Observations," Discussion Papers 2007/25, Norwegian School of Economics, Department of Business and Management Science.
- Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
More about this item
Keywords
Multisample tests for scale Kernel density estimation U-statistics;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:49:y:2000:i:1:p:81-91. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.