Estimation of density functionals
Author
Abstract
Suggested Citation
DOI: 10.1007/BF00773593
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
- Jones, M. C. & Sheather, S. J., 1991. "Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 11(6), pages 511-514, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José E. Chacón & Carlos Tenreiro, 2012. "Exact and Asymptotically Optimal Bandwidths for Kernel Estimation of Density Functionals," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 523-548, September.
- Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
- Hall, Peter & Wolff, Rodney C. L., 1995. "Estimators of integrals of powers of density derivatives," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 105-110, August.
- Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
- Powell, James L. & Stoker, Thomas M., 1996.
"Optimal bandwidth choice for density-weighted averages,"
Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
- Powell, James L. & Stoker, Thomas M., 1992. "Optimal bandwidth choice for density-weighted averages," Working papers 3424-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Saavedra, Ángeles & Cao, Ricardo, 1999. "Rate of convergence of a convolution-type estimator of the marginal density of a MA(1) process," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 129-155, April.
- Hidehiko Ichimura & Oliver Linton, 2001.
"Asymptotic expansions for some semiparametric program evaluation estimators,"
CeMMAP working papers
04/01, Institute for Fiscal Studies.
- Hidehiko Ichimura & Oliver Linton, 2003. "Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators," STICERD - Econometrics Paper Series 451, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers CWP04/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ichimura, Hidehiko & Linton, Oliver, 2003. "Asymptotic expansions for some semiparametric program evaluation estimators," LSE Research Online Documents on Economics 2098, London School of Economics and Political Science, LSE Library.
- Farmen, Mark & Marron, J. S., 1999. "An assessment of finite sample performance of adaptive methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 143-168, April.
- Dimitrios Bagkavos, 2011. "Local linear hazard rate estimation and bandwidth selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 1019-1046, October.
- Mizushima, Takamasa, 2000. "Multisample tests for scale based on kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 81-91, August.
- Tenreiro, Carlos, 2003. "On the asymptotic normality of multistage integrated density derivatives kernel estimators," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 311-322, September.
- Berwin A. TURLACH, "undated". "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
- Tiee-Jian Wu & Chih-Yuan Hsu & Huang-Yu Chen & Hui-Chun Yu, 2014. "Root $$n$$ n estimates of vectors of integrated density partial derivative functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 865-895, October.
- Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
- Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2017. "Bandwidth selection in kernel density estimation for interval-grouped data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 527-545, September.
- Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
- Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
- Michael Jansson & Demian Pouzo, 2017.
"Towards a General Large Sample Theory for Regularized Estimators,"
Papers
1712.07248, arXiv.org, revised Jul 2020.
- Michael Jansson & Demian Pouzo, 2019. "Towards a general large sample theory for regularized estimators," CeMMAP working papers CWP63/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Vexler, Albert & Gao, Xinyu & Zhou, Jiaojiao, 2023. "How to implement signed-rank wilcox.test() type procedures when a center of symmetry is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- J. Liao & Yujun Wu & Yong Lin, 2010. "Improving Sheather and Jones’ bandwidth selector for difficult densities in kernel density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 105-114.
More about this item
Keywords
Density functionals; empirical central limit theorem; estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:46:y:1994:i:1:p:67-75. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.