IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v42y1999i1p39-46.html
   My bibliography  Save this article

Goodness-of-fit test for linear models based on local polynomials

Author

Listed:
  • Alcalá, J. T.
  • Cristóbal, J. A.
  • González-Manteiga, W.

Abstract

We test if a regression function belongs to a class of parametric models by measuring the discrepancy between a parametric fit and a local polynomial regression. The proposed test is a weighted L2-norm of a smoothed function based on the parametric residuals.

Suggested Citation

  • Alcalá, J. T. & Cristóbal, J. A. & González-Manteiga, W., 1999. "Goodness-of-fit test for linear models based on local polynomials," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 39-46, March.
  • Handle: RePEc:eee:stapro:v:42:y:1999:i:1:p:39-46
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00184-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dette, Holger, 2000. "On a nonparametric test for linear relationships," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 307-316, February.
    2. Mario Francisco-Fernández & Juan Vilar-Fernández, 2009. "Two tests for heteroscedasticity in nonparametric regression," Computational Statistics, Springer, vol. 24(1), pages 145-163, February.
    3. Gilles R. Ducharme & Bénédicte Fontez, 2004. "A Smooth Test of Goodness-of-Fit for Growth Curves and Monotonic Nonlinear Regression Models," Biometrics, The International Biometric Society, vol. 60(4), pages 977-986, December.
    4. Biedermann, Stefanie & Dette, Holger, 2000. "Testing linearity of regression models with dependent errors by kernel based methods," Technical Reports 2000,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. J. Opsomer & M. Francisco-Fernández, 2010. "Finding local departures from a parametric model using nonparametric regression," Statistical Papers, Springer, vol. 51(1), pages 69-84, January.
    6. Stefanie Biedermann & Holger Dette, 2000. "Testing linearity of regression models with dependent errors by kernel based methods," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 417-438, December.
    7. Heuchenne, Cédric & Van Keilegom, Ingrid, 2010. "Goodness-of-fit tests for the error distribution in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1942-1951, August.
    8. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    9. Gijbels, Irène & Rousson, Valentin, 2001. "A nonparametric least-squares test for checking a polynomial relationship," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 253-261, February.
    10. Dette, Holger & Neumeyer, Natalie, 2000. "Nonparametric analysis of covariance," Technical Reports 2000,42, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Dette, Holger & Hetzler, Benjamin, 2004. "Specification tests indexed by bandwidths," Technical Reports 2004,48, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. J. Ojeda & J. Cristóbal & J. Alcalá, 2008. "A bootstrap approach to model checking for linear models under length-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 519-543, September.
    13. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:42:y:1999:i:1:p:39-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.