IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v46y2000i3p307-316.html
   My bibliography  Save this article

On a nonparametric test for linear relationships

Author

Listed:
  • Dette, Holger

Abstract

In a recent paper Azzalini and Bowman (1993, J. Roy. Statist. Soc. Ser. B 55, 549-559) proposed a pseudolikelihood ratio test for checking the linearity in a homoscedastic nonparametric regression model under a fixed design assumption. In this paper, we study the asymptotic properties of this test and establish asymptotic normality under the hypothesis of linearity and under any fixed alternative with different rates of convergence in both cases. In a second part of the paper these results are extended to nonparmetric regression models with a random design.

Suggested Citation

  • Dette, Holger, 2000. "On a nonparametric test for linear relationships," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 307-316, February.
  • Handle: RePEc:eee:stapro:v:46:y:2000:i:3:p:307-316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00130-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Dette & A. Munk, 1998. "Testing heteroscedasticity in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 693-708.
    2. Alcalá, J. T. & Cristóbal, J. A. & González-Manteiga, W., 1999. "Goodness-of-fit test for linear models based on local polynomials," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 39-46, March.
    3. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neumeyer, Natalie, 2009. "Testing independence in nonparametric regression," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1551-1566, August.
    2. Biedermann, Stefanie & Dette, Holger, 2000. "Testing linearity of regression models with dependent errors by kernel based methods," Technical Reports 2000,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    4. Zhu, Xuehu & Guo, Xu & Lin, Lu & Zhu, Lixing, 2015. "Heteroscedasticity checks for single index models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 41-55.
    5. Dette, Holger & Hetzler, Benjamin, 2004. "Specification tests indexed by bandwidths," Technical Reports 2004,48, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Samarakoon, Nishantha & Song, Weixing, 2011. "Minimum distance conditional variance function checking in heteroscedastic regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 579-600, March.
    7. Mario Francisco-Fernández & Juan Vilar-Fernández, 2009. "Two tests for heteroscedasticity in nonparametric regression," Computational Statistics, Springer, vol. 24(1), pages 145-163, February.
    8. J. Opsomer & M. Francisco-Fernández, 2010. "Finding local departures from a parametric model using nonparametric regression," Statistical Papers, Springer, vol. 51(1), pages 69-84, January.
    9. Biedermann, Stefanie & Dette, Holger, 2001. "Optimal designs for testing the functional form of a regression via nonparametric estimation techniques," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 215-224, April.
    10. Daniel L. Millimet & John A. List & Thanasis Stengos, 2003. "The Environmental Kuznets Curve: Real Progress or Misspecified Models?," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1038-1047, November.
    11. Pantelis Kalaitzidakis & Theofanis P. Mamuneas & Thanasis Stengos, 2008. "The Contribution of Pollution to Productivity Growth," Working Paper series 06_08, Rimini Centre for Economic Analysis.
    12. Xu, Hong-Xia & Fan, Guo-Liang & Chen, Zhen-Long, 2017. "Hypothesis tests in partial linear errors-in-variables models with missing response," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 219-229.
    13. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    15. Ellison, Glenn & Ellison, Sara Fisher, 2000. "A simple framework for nonparametric specification testing," Journal of Econometrics, Elsevier, vol. 96(1), pages 1-23, May.
    16. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    17. Estate V. Khmaladze, 2021. "Distribution-free testing in linear and parametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1063-1087, December.
    18. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Testing the martingale difference hypothesis using integrated regression functions," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2278-2294, December.
    19. Long Feng & Changliang Zou & Zhaojun Wang & Lixing Zhu, 2015. "Robust comparison of regression curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 185-204, March.
    20. Lavergne, Pascal, 2001. "An equality test across nonparametric regressions," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 307-344, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:46:y:2000:i:3:p:307-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.