IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v39y1998i4p379-384.html
   My bibliography  Save this article

Statistical estimation by a linear combination of two given statistics

Author

Listed:
  • Gro[beta], Jürgen

Abstract

Linear combination of two statistics is considered when some prior knowledge about their expectation and complete knowledge about their joint dispersion is available. The considered setup is more general than those already known in the literature, in the sense that the expectation of one of the statistics is not necessarily assumed to be completely known when estimation of the expectation of the other statistic is of interest.

Suggested Citation

  • Gro[beta], Jürgen, 1998. "Statistical estimation by a linear combination of two given statistics," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 379-384, August.
  • Handle: RePEc:eee:stapro:v:39:y:1998:i:4:p:379-384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00097-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baksalary, Jerzy K. & Trenkler, Gotz, 1991. "Covariance adjustment in biased estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(2), pages 221-230, September.
    2. Rao, C. Radhakrishna, 1973. "Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix," Journal of Multivariate Analysis, Elsevier, vol. 3(3), pages 276-292, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan J. Rogers, 2013. "Concentration Ellipsoids, Their Planes of Support, and the Linear Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 220-243, February.
    2. Nesrin Güler & Melek Eriş Büyükkaya & Melike Yiğit, 2022. "Comparison of Covariance Matrices of Predictors in Seemingly Unrelated Regression Models," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(3), pages 801-809, September.
    3. repec:ebl:ecbull:v:3:y:2002:i:1:p:1-7 is not listed on IDEAS
    4. Lichun Wang, 2018. "On Seemingly Unrelated Regressions with Linear Restrictions," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(4), pages 110-113, April.
    5. He, Daojiang & Wu, Jie, 2014. "Admissible linear estimators of multivariate regression coefficient with respect to an inequality constraint under matrix balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 37-43.
    6. Stephen Haslett & Simo Puntanen, 2011. "On the equality of the BLUPs under two linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 381-395, November.
    7. Groß, Jürgen, 1997. "A note on estimation via linearly combining two given staistics," Technical Reports 1997,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Harry Haupt & Walter Oberhofer, 2002. "Fully restricted linear regression: A pedagogical note," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-7.
    9. Groß, Jürgen & Trenkler, Götz, 1998. "The equality between linear transforms of ordinary least squares and best linear unbiased estimator," Technical Reports 1998,14, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Haupt, Harry & Oberhofer, Walter, 2006. "Best affine unbiased representations of the fully restricted general Gauss-Markov model," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 759-764, March.
    11. Guang Jing Song & Qing Wen Wang, 2014. "On the weighted least-squares, the ordinary least-squares and the best linear unbiased estimators under a restricted growth curve model," Statistical Papers, Springer, vol. 55(2), pages 375-392, May.
    12. Yongge Tian & Jieping Zhang, 2011. "Some equalities for estimations of partial coefficients under a general linear regression model," Statistical Papers, Springer, vol. 52(4), pages 911-920, November.
    13. Changli Lu & Yuqin Sun & Yongge Tian, 2013. "On relations between weighted least-squares estimators of parametric functions under a general partitioned linear model and its small models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 707-722, July.
    14. Tian, Yongge & Jiang, Bo, 2016. "Equalities for estimators of partial parameters under linear model with restrictions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 299-313.
    15. S. J. Haslett & X. Q. Liu & A. Markiewicz & S. Puntanen, 2020. "Some properties of linear sufficiency and the BLUPs in the linear mixed model," Statistical Papers, Springer, vol. 61(1), pages 385-401, February.
    16. Markiewicz, Augustyn, 1998. "Comparison of linear restricted models with respect to the validity of admissible and linearly sufficient estimators," Statistics & Probability Letters, Elsevier, vol. 38(4), pages 347-354, July.
    17. Huang, Yunying & Zheng, Bing, 2015. "The additive and block decompositions about the WLSEs of parametric functions for a multiple partitioned linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 123-135.
    18. Liu, Xin & Wang, Qing-Wen, 2013. "Equality of the BLUPs under the mixed linear model when random components and errors are correlated," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 297-309.
    19. Ren, Xingwei, 2014. "On the equivalence of the BLUEs under a general linear model and its restricted and stochastically restricted models," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 1-10.
    20. Yongge Tian & Wenxing Guo, 2016. "On comparison of dispersion matrices of estimators under a constrained linear model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 623-649, November.
    21. Yongge Tian, 2017. "Transformation approaches of linear random-effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 583-608, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:39:y:1998:i:4:p:379-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.