IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v131y2014icp279-292.html
   My bibliography  Save this article

On relations between BLUEs under two transformed linear models

Author

Listed:
  • Dong, Baomin
  • Guo, Wenxing
  • Tian, Yongge

Abstract

For a given general linear model ℳ={y,Xβ,Σ}, we investigate relationships between the best linear unbiased estimations (BLUEs) under its two transformed models ℳ1={Ay,AXβ,AΣA′} and ℳ2={By,BXβ,BΣB′}. We first establish some expansion formulas for calculating the ranks and inertias of the covariance matrices of BLUEs and their operations under ℳ1 and ℳ2. We then derive from the rank and inertia formulas necessary and sufficient conditions for equalities and inequalities of BLUEs’ covariance matrices to hold. We also give applications of the rank and inertia formulas to two sub-sample models of ℳ.

Suggested Citation

  • Dong, Baomin & Guo, Wenxing & Tian, Yongge, 2014. "On relations between BLUEs under two transformed linear models," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 279-292.
  • Handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:279-292
    DOI: 10.1016/j.jmva.2014.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongge Tian & M. Beisiegel & E. Dagenais & C. Haines, 2008. "On the natural restrictions in the singular Gauss–Markov model," Statistical Papers, Springer, vol. 49(3), pages 553-564, July.
    2. Farebrother, R. W., 1979. "Estimation with aggregated data," Journal of Econometrics, Elsevier, vol. 10(1), pages 43-55, April.
    3. Lucke, Bernd, 1991. "On BLU-estimation with data of different periodicity," Economics Letters, Elsevier, vol. 35(2), pages 173-177, February.
    4. Rao, C. Radhakrishna, 1973. "Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix," Journal of Multivariate Analysis, Elsevier, vol. 3(3), pages 276-292, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yongge & Jiang, Bo, 2016. "Equalities for estimators of partial parameters under linear model with restrictions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 299-313.
    2. Yongge Tian & Wenxing Guo, 2016. "On comparison of dispersion matrices of estimators under a constrained linear model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 623-649, November.
    3. Y. Tian, 2017. "Some equalities and inequalities for covariance matrices of estimators under linear model," Statistical Papers, Springer, vol. 58(2), pages 467-484, June.
    4. Yongge Tian, 2017. "Transformation approaches of linear random-effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 583-608, November.
    5. Ren, Xingwei, 2016. "Estimation in singular linear models with stepwise inclusion of linear restrictions," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 60-72.
    6. Jiang, Bo & Tian, Yongge, 2017. "Rank/inertia approaches to weighted least-squares solutions of linear matrix equations," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 400-413.
    7. Yongge Tian & Bo Jiang, 2017. "Quadratic properties of least-squares solutions of linear matrix equations with statistical applications," Computational Statistics, Springer, vol. 32(4), pages 1645-1663, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guang Jing Song & Qing Wen Wang, 2014. "On the weighted least-squares, the ordinary least-squares and the best linear unbiased estimators under a restricted growth curve model," Statistical Papers, Springer, vol. 55(2), pages 375-392, May.
    2. Yongge Tian & Jieping Zhang, 2011. "Some equalities for estimations of partial coefficients under a general linear regression model," Statistical Papers, Springer, vol. 52(4), pages 911-920, November.
    3. Ren, Xingwei, 2014. "On the equivalence of the BLUEs under a general linear model and its restricted and stochastically restricted models," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 1-10.
    4. Yongge Tian & Wenxing Guo, 2016. "On comparison of dispersion matrices of estimators under a constrained linear model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 623-649, November.
    5. Y. Tian, 2017. "Some equalities and inequalities for covariance matrices of estimators under linear model," Statistical Papers, Springer, vol. 58(2), pages 467-484, June.
    6. Tian, Yongge & Jiang, Bo, 2016. "Equalities for estimators of partial parameters under linear model with restrictions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 299-313.
    7. Nesrin Güler & Melek Eriş Büyükkaya & Melike Yiğit, 2022. "Comparison of Covariance Matrices of Predictors in Seemingly Unrelated Regression Models," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(3), pages 801-809, September.
    8. Yuqin Sun & Rong Ke & Yongge Tian, 2014. "Some overall properties of seemingly unrelated regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 103-120, April.
    9. Stephen Haslett & Simo Puntanen, 2011. "On the equality of the BLUPs under two linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 381-395, November.
    10. Harry Haupt & Walter Oberhofer, 2002. "Fully restricted linear regression: A pedagogical note," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-7.
    11. Haupt, Harry & Oberhofer, Walter, 2006. "Best affine unbiased representations of the fully restricted general Gauss-Markov model," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 759-764, March.
    12. Gámiz, María Luz & Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch, 2022. "Missing link survival analysis with applications to available pandemic data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    13. Changli Lu & Yuqin Sun & Yongge Tian, 2013. "On relations between weighted least-squares estimators of parametric functions under a general partitioned linear model and its small models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 707-722, July.
    14. S. J. Haslett & X. Q. Liu & A. Markiewicz & S. Puntanen, 2020. "Some properties of linear sufficiency and the BLUPs in the linear mixed model," Statistical Papers, Springer, vol. 61(1), pages 385-401, February.
    15. Huang, Yunying & Zheng, Bing, 2015. "The additive and block decompositions about the WLSEs of parametric functions for a multiple partitioned linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 123-135.
    16. Yongge Tian, 2017. "Transformation approaches of linear random-effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 583-608, November.
    17. Bo Jiang & Yuqin Sun, 2019. "On the equality of estimators under a general partitioned linear model with parameter restrictions," Statistical Papers, Springer, vol. 60(1), pages 273-292, February.
    18. Lu, Changli & Gan, Shengjun & Tian, Yongge, 2015. "Some remarks on general linear model with new regressors," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 16-24.
    19. Alan J. Rogers, 2013. "Concentration Ellipsoids, Their Planes of Support, and the Linear Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 220-243, February.
    20. repec:ebl:ecbull:v:3:y:2002:i:1:p:1-7 is not listed on IDEAS
    21. He, Daojiang & Wu, Jie, 2014. "Admissible linear estimators of multivariate regression coefficient with respect to an inequality constraint under matrix balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 37-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:131:y:2014:i:c:p:279-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.