IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v27y1996i4p357-365.html
   My bibliography  Save this article

Quantile estimation under possibly misspecified generalised linear model

Author

Listed:
  • Séménou, M.

Abstract

The following paper deals with the asymptotic behaviour of the maximum likelihood estimator in a misspecified generalised linear model. Of particularly interest is the estimation of a quantile in dose-response curves. Using asymptotic properties of the maximum likelihood estimator under misspecification of the model, these results are applied to quantile estimation for dose-response curves. Consistency and asymptotic normality are established.

Suggested Citation

  • Séménou, M., 1996. "Quantile estimation under possibly misspecified generalised linear model," Statistics & Probability Letters, Elsevier, vol. 27(4), pages 357-365, May.
  • Handle: RePEc:eee:stapro:v:27:y:1996:i:4:p:357-365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(95)00100-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    2. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Modarres, Reza & Nayak, Tapan K. & Gastwirth, Joseph L., 2002. "Estimation of upper quantiles under model and parameter uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 529-554, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    2. Tang, Niansheng & Wang, Wenjun, 2019. "Robust estimation of generalized estimating equations with finite mixture correlation matrices and missing covariates at random for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 640-655.
    3. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    4. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    5. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    6. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    7. Schwiebert, Jörg & Wagner, Joachim, 2015. "A Generalized Two-Part Model for Fractional Response Variables with Excess Zeros," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113059, Verein für Socialpolitik / German Economic Association.
    8. Michael R. Baye & J. Rupert J. Gatti & Paul Kattuman & John Morgan, 2009. "Clicks, Discontinuities, and Firm Demand Online," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 18(4), pages 935-975, December.
    9. Gannon, Gerard L. & Choi, Daniel F. S., 1998. "Structural models: Intra/Inter-day volatility transmission and spillover persistence of the HSI, HSIF and S&P500 futures," International Review of Financial Analysis, Elsevier, vol. 7(1), pages 19-36.
    10. Antoine, Bertille & Dovonon, Prosper, 2021. "Robust estimation with exponentially tilted Hellinger distance," Journal of Econometrics, Elsevier, vol. 224(2), pages 330-344.
    11. José M. R. Murteira & Joaquim J. S. Ramalho, 2016. "Regression Analysis of Multivariate Fractional Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 515-552, April.
    12. Piotr Borkowski & Jan Mielniczuk, 2010. "Postmodel selection estimators of variance function for nonlinear autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 50-63, January.
    13. C. Gouriéroux & A. Monfort & J.‐M. Zakoïan, 2019. "Consistent Pseudo‐Maximum Likelihood Estimators and Groups of Transformations," Econometrica, Econometric Society, vol. 87(1), pages 327-345, January.
    14. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," LIDAM Discussion Papers CORE 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. von Haefen, Roger H. & Phaneuf, Daniel J., 2003. "Estimating preferences for outdoor recreation:: a comparison of continuous and count data demand system frameworks," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 612-630, May.
    16. Gospodinov, Nikolay & Maasoumi, Esfandiar, 2021. "Generalized aggregation of misspecified models: With an application to asset pricing," Journal of Econometrics, Elsevier, vol. 222(1), pages 451-467.
    17. Alessandra Cretarola & Gianna Fig`a-Talamanca & Marco Patacca, 2017. "A sentiment-based model for the BitCoin: theory, estimation and option pricing," Papers 1709.08621, arXiv.org.
    18. Wooldridge, Jeffrey M., 2014. "Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 182(1), pages 226-234.
    19. Chen, Willa W. & Deo, Rohit S., 2006. "Estimation of mis-specified long memory models," Journal of Econometrics, Elsevier, vol. 134(1), pages 257-281, September.
    20. Baye, Michael & GATTI, RUPERT J & Kattuman, Paul & Morgan, John, 2004. "Estimating Firm-Level Demand at a Price Comparison Site: Accounting for Shoppers and the Number of Competitors," Competition Policy Center, Working Paper Series qt923692d1, Competition Policy Center, Institute for Business and Economic Research, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:27:y:1996:i:4:p:357-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.