IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v208y2024ics0167715224000075.html
   My bibliography  Save this article

Choice of the hypothesis matrix for using the Wald-type-statistic

Author

Listed:
  • Sattler, Paavo
  • Zimmermann, Georg

Abstract

A widely used formulation for null hypotheses in the analysis of multivariate d-dimensional data is H0:Hθ=y with H∈Rm×d, θ∈Rd and y∈Rm, where m≤d. Here the unknown parameter vector θ can, for example, be the expectation vector μ, a vector β containing regression coefficients or a quantile vector q. Also, the vector of nonparametric relative effects p or an upper triangular vectorized covariance matrix v are useful choices. However, even without multiplying the hypothesis with a scalar γ≠0, there is a multitude of possibilities to formulate the same null hypothesis with different hypothesis matrices H and corresponding vectors y. Although it is a well-known fact that in case of y=0 there exists a unique projection matrix P with Hθ=0⇔Pθ=0, for y≠0 such a projection matrix does not necessarily exist. Moreover, such hypotheses are often investigated using a quadratic form as the test statistic and the corresponding projection matrices frequently contain zero rows; so, they are not even efficient from a computational point of view. In this manuscript, we show that for the Wald-type-statistic (WTS), which is one of the most frequently used quadratic forms, the choice of the concrete hypothesis matrix does not affect the test decision. Moreover, some simulations are conducted to investigate the possible influence of the hypothesis matrix on the computation time.

Suggested Citation

  • Sattler, Paavo & Zimmermann, Georg, 2024. "Choice of the hypothesis matrix for using the Wald-type-statistic," Statistics & Probability Letters, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000075
    DOI: 10.1016/j.spl.2024.110038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    2. Markus Pauly & Edgar Brunner & Frank Konietschke, 2015. "Asymptotic permutation tests in general factorial designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 461-473, March.
    3. Edgar Brunner & Madan Puri, 2001. "Nonparametric methods in factorial designs," Statistical Papers, Springer, vol. 42(1), pages 1-52, January.
    4. Marc Ditzhaus & Roland Fried & Markus Pauly, 2021. "QANOVA: quantile-based permutation methods for general factorial designs," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 960-979, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ditzhaus, Marc & Smaga, Łukasz, 2022. "Permutation test for the multivariate coefficient of variation in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    3. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    4. Baumeister, Marléne & Ditzhaus, Marc & Pauly, Markus, 2024. "Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    6. Sonja Hahn & Luigi Salmaso, 2017. "A comparison of different synchronized permutation approaches to testing effects in two-level two-factor unbalanced ANOVA designs," Statistical Papers, Springer, vol. 58(1), pages 123-146, March.
    7. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    8. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    9. Marinho Bertanha & Eunyi Chung, 2023. "Permutation Tests at Nonparametric Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2833-2846, October.
    10. Arne Bathke, 2009. "A unified approach to nonparametric trend tests for dependent and independent samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 17-29, January.
    11. Edgar Brunner & Madan L. Puri, 2013. "Comments on the paper ‘Type I error and test power of different tests for testing interaction effects in factorial experiments’ by M. Mendes and S. Yigit (Statistica Neerlandica, 2013, pp. 1–26)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 390-396, November.
    12. Tobias Bluhmki & Dennis Dobler & Jan Beyersmann & Markus Pauly, 2019. "The wild bootstrap for multivariate Nelson–Aalen estimators," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 97-127, January.
    13. Ingrid Burfurd & Tom Wilkening, 2022. "Cognitive heterogeneity and complex belief elicitation," Experimental Economics, Springer;Economic Science Association, vol. 25(2), pages 557-592, April.
    14. Jasmin Rühl & Sarah Friedrich, 2024. "Asymptotic properties of resampling‐based processes for the average treatment effect in observational studies with competing risks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1506-1532, December.
    15. Meng Yuan & Chunlin Wang & Boxi Lin & Pengfei Li, 2022. "Semiparametric inference on general functionals of two semicontinuous populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 451-472, June.
    16. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    17. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    18. Chung, EunYi & Romano, Joseph P., 2016. "Multivariate and multiple permutation tests," Journal of Econometrics, Elsevier, vol. 193(1), pages 76-91.
    19. Tomasz Górecki & Łukasz Smaga, 2019. "fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data," Computational Statistics, Springer, vol. 34(2), pages 571-597, June.
    20. Dennis Dobler & Sarah Friedrich & Markus Pauly, 2020. "Nonparametric MANOVA in meaningful effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 997-1022, August.

    More about this item

    Keywords

    Multivariate data; Hypothesis matrix;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.