IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v208y2024ics0167715224000075.html
   My bibliography  Save this article

Choice of the hypothesis matrix for using the Wald-type-statistic

Author

Listed:
  • Sattler, Paavo
  • Zimmermann, Georg

Abstract

A widely used formulation for null hypotheses in the analysis of multivariate d-dimensional data is H0:Hθ=y with H∈Rm×d, θ∈Rd and y∈Rm, where m≤d. Here the unknown parameter vector θ can, for example, be the expectation vector μ, a vector β containing regression coefficients or a quantile vector q. Also, the vector of nonparametric relative effects p or an upper triangular vectorized covariance matrix v are useful choices. However, even without multiplying the hypothesis with a scalar γ≠0, there is a multitude of possibilities to formulate the same null hypothesis with different hypothesis matrices H and corresponding vectors y. Although it is a well-known fact that in case of y=0 there exists a unique projection matrix P with Hθ=0⇔Pθ=0, for y≠0 such a projection matrix does not necessarily exist. Moreover, such hypotheses are often investigated using a quadratic form as the test statistic and the corresponding projection matrices frequently contain zero rows; so, they are not even efficient from a computational point of view. In this manuscript, we show that for the Wald-type-statistic (WTS), which is one of the most frequently used quadratic forms, the choice of the concrete hypothesis matrix does not affect the test decision. Moreover, some simulations are conducted to investigate the possible influence of the hypothesis matrix on the computation time.

Suggested Citation

  • Sattler, Paavo & Zimmermann, Georg, 2024. "Choice of the hypothesis matrix for using the Wald-type-statistic," Statistics & Probability Letters, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000075
    DOI: 10.1016/j.spl.2024.110038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Pauly & Edgar Brunner & Frank Konietschke, 2015. "Asymptotic permutation tests in general factorial designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 461-473, March.
    2. Edgar Brunner & Madan Puri, 2001. "Nonparametric methods in factorial designs," Statistical Papers, Springer, vol. 42(1), pages 1-52, January.
    3. Marc Ditzhaus & Roland Fried & Markus Pauly, 2021. "QANOVA: quantile-based permutation methods for general factorial designs," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 960-979, December.
    4. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ditzhaus, Marc & Smaga, Łukasz, 2022. "Permutation test for the multivariate coefficient of variation in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    3. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    4. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    5. Baumeister, Marléne & Ditzhaus, Marc & Pauly, Markus, 2024. "Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
    7. Meng Yuan & Chunlin Wang & Boxi Lin & Pengfei Li, 2022. "Semiparametric inference on general functionals of two semicontinuous populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 451-472, June.
    8. H. V. Kulkarni & S. M. Patil, 2021. "Uniformly implementable small sample integrated likelihood ratio test for one-way and two-way ANOVA under heteroscedasticity and normality," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 273-305, June.
    9. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    10. Wang, Chunlin & Marriott, Paul & Li, Pengfei, 2017. "Testing homogeneity for multiple nonnegative distributions with excess zero observations," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 146-157.
    11. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    12. Yufan Wang & Xingzhong Xu, 2023. "Homogeneity Test for Multiple Semicontinuous Data with the Density Ratio Model," Mathematics, MDPI, vol. 11(17), pages 1-28, September.
    13. Denis A. Shah & Laurence V. Madden, 2013. "A comment on Mendeş and Yiğit (2013), ‘Type I error and test power of different tests for testing interaction effects in factorial experiments’, Statistica Neerlandica, 67:1–26," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 397-399, November.
    14. Marc Ditzhaus & Arnold Janssen, 2020. "Bootstrap and permutation rank tests for proportional hazards under right censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 493-517, July.
    15. Zimmermann, Georg & Pauly, Markus & Bathke, Arne C., 2020. "Multivariate analysis of covariance with potentially singular covariance matrices and non-normal responses," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    16. Umlauft, Maria & Placzek, Marius & Konietschke, Frank & Pauly, Markus, 2019. "Wild bootstrapping rank-based procedures: Multiple testing in nonparametric factorial repeated measures designs," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 176-192.
    17. Federico Bugni & Jackson Bunting & Muyang Ren, 2024. "Marginal homogeneity tests with panel data," Papers 2408.15862, arXiv.org.
    18. Debajit Chatterjee & Uttam Bandyopadhyay, 2019. "Testing in nonparametric ANCOVA model based on ridit reliability functional," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 327-364, April.
    19. Jesse Hemerik & Jelle J. Goeman & Livio Finos, 2020. "Robust testing in generalized linear models by sign flipping score contributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 841-864, July.
    20. Edgar Brunner & Frank Konietschke & Arne C. Bathke & Markus Pauly, 2021. "Ranks and Pseudo‐ranks—Surprising Results of Certain Rank Tests in Unbalanced Designs," International Statistical Review, International Statistical Institute, vol. 89(2), pages 349-366, August.

    More about this item

    Keywords

    Multivariate data; Hypothesis matrix;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.