IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v205y2024ics0167715223001840.html
   My bibliography  Save this article

Test for diagonal symmetry in high dimension

Author

Listed:
  • Sang, Yongli

Abstract

Utilizing the energy distance and energy statistics, Sang and Dang (2020) proposed a test statistic as a difference of two U-statistics for the diagonal symmetry test of a p-vector X. Under the regular setting where the dimensionality of the random vector is fixed, the test statistic is a degenerate U-statistic and hence converges to a mixture of chi-squared distributions. In this paper, we test the diagonal symmetry of X in a more realistic setting where both the sample size and the dimensionality are diverging to infinity. Our theoretical results reveal that the degenerate U-statistic admits a central limit theorem in the high dimensional setting and the accuracy of normal approximation can increase with dimensionality. We then construct a powerful and consistent test for the diagonal symmetry problem based on the asymptotic normality. Simulation studies are conducted to illustrate the performances of the test.

Suggested Citation

  • Sang, Yongli, 2024. "Test for diagonal symmetry in high dimension," Statistics & Probability Letters, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:stapro:v:205:y:2024:i:c:s0167715223001840
    DOI: 10.1016/j.spl.2023.109960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223001840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henze, N. & Klar, B. & Meintanis, S. G., 2003. "Invariant tests for symmetry about an unspecified point based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 275-297, November.
    2. Dai, Xinjie & Niu, Cuizhen & Guo, Xu, 2018. "Testing for central symmetry and inference of the unknown center," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 15-31.
    3. Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
    4. Henderson, Daniel J. & Parmeter, Christopher F., 2015. "A consistent bootstrap procedure for nonparametric symmetry tests," Economics Letters, Elsevier, vol. 131(C), pages 78-82.
    5. Fang, Ying & Li, Qi & Wu, Ximing & Zhang, Daiqiang, 2015. "A data-driven smooth test of symmetry," Journal of Econometrics, Elsevier, vol. 188(2), pages 490-501.
    6. Sang, Yongli & Dang, Xin, 2020. "Empirical likelihood test for diagonal symmetry," Statistics & Probability Letters, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Xinjie & Niu, Cuizhen & Guo, Xu, 2018. "Testing for central symmetry and inference of the unknown center," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 15-31.
    2. Niu, Cuizhen & Guo, Xu & Li, Yong & Zhu, Lixing, 2018. "Pairwise distance-based tests for conditional symmetry," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 145-162.
    3. Delgado, Miguel A. & Song, Xiaojun, 2018. "Nonparametric tests for conditional symmetry," Journal of Econometrics, Elsevier, vol. 206(2), pages 447-471.
    4. Tarik Bahraoui & Jean‐François Quessy, 2022. "Tests of multivariate copula exchangeability based on Lévy measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1215-1243, September.
    5. Norbert Henze & Pierre Lafaye De Micheaux & Simos G. Meintanis, 2022. "Tests for circular symmetry of complex-valued random vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 488-518, June.
    6. Sakineh Dehghan & Mohammad Reza Faridrohani & Zahra Barzegar, 2023. "Testing for diagonal symmetry based on center-outward ranking," Statistical Papers, Springer, vol. 64(1), pages 255-283, February.
    7. Hušková, Marie & Meintanis, Simos G. & Pretorius, Charl, 2020. "Tests for validity of the semiparametric heteroskedastic transformation model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Vexler, Albert & Zou, Li, 2022. "Linear projections of joint symmetry and independence applied to exact testing treatment effects based on multidimensional outcomes," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    10. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    11. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    12. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    14. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    15. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    16. Zacharias Psaradakis & Marian Vavra, 2018. "Bootstrap Assisted Tests of Symmetry for Dependent Data," Working and Discussion Papers WP 5/2018, Research Department, National Bank of Slovakia.
    17. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    18. Leucht, Anne, 2012. "Characteristic function-based hypothesis tests under weak dependence," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 67-89.
    19. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    20. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:205:y:2024:i:c:s0167715223001840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.