IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v193y2023ics0167715222002528.html
   My bibliography  Save this article

Generalized Markov chain tree theorem and Kemeny’s constant for a class of non-Markovian matrices

Author

Listed:
  • Choi, Michael C.H.
  • Huang, Zhipeng

Abstract

Given an ergodic Markov chain with transition matrix P and stationary distribution π, the classical Markov chain tree theorem expresses π in terms of graph-theoretic parameters associated with the graph of P. For a class of non-stochastic matrices M2 associated with P, recently introduced by the first author in Choi (2020) and Choi and Huang (2020), we prove a generalized version of Markov chain tree theorem in terms of graph-theoretic quantities of M2. This motivates us to define generalized version of mean hitting time, fundamental matrix and Kemeny’s constant associated with M2, and we show that they enjoy similar properties as their counterparts of P even though M2 is non-stochastic. We hope to shed lights on how concepts and results originated from the Markov chain literature, such as the Markov chain tree theorem, Kemeny’s constant or the notion of hitting time, can possibly be extended and generalized to a broader class of non-stochastic matrices via introducing appropriate graph-theoretic parameters. In particular, when P is reversible, the results of this paper reduce to the results of P.

Suggested Citation

  • Choi, Michael C.H. & Huang, Zhipeng, 2023. "Generalized Markov chain tree theorem and Kemeny’s constant for a class of non-Markovian matrices," Statistics & Probability Letters, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:stapro:v:193:y:2023:i:c:s0167715222002528
    DOI: 10.1016/j.spl.2022.109739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222002528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. H. Choi & Lu-Jing Huang, 2020. "On Hitting Time, Mixing Time and Geometric Interpretations of Metropolis–Hastings Reversiblizations," Journal of Theoretical Probability, Springer, vol. 33(2), pages 1144-1163, June.
    2. Anantharam, V. & Tsoucas, P., 1989. "A proof of the Markov chain tree theorem," Statistics & Probability Letters, Elsevier, vol. 8(2), pages 189-192, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Pradeep & Sahi, Siddhartha & Shubik, Martin, 2018. "Money as minimal complexity," Games and Economic Behavior, Elsevier, vol. 108(C), pages 432-451.
    2. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    3. L. Avena & A. Gaudillière, 2018. "Two Applications of Random Spanning Forests," Journal of Theoretical Probability, Springer, vol. 31(4), pages 1975-2004, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:193:y:2023:i:c:s0167715222002528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.