IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v190y2022ics0167715222001523.html
   My bibliography  Save this article

Construction controllability for conformable fractional stochastic evolution system with noninstantaneous impulse and nonlocal condition

Author

Listed:
  • Ahmed, Hamdy M.

Abstract

Conformable fractional stochastic differential equation with noninstantaneous impulse and Poisson jump via nonlocal condition is studied. Controllability for the considered problem is constructed. The required results are established based on fractional calculus, stochastic analysis, and Sadovskii’s fixed point theorem. Moreover, an example is provided to illustrate the applicability of the results.

Suggested Citation

  • Ahmed, Hamdy M., 2022. "Construction controllability for conformable fractional stochastic evolution system with noninstantaneous impulse and nonlocal condition," Statistics & Probability Letters, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:stapro:v:190:y:2022:i:c:s0167715222001523
    DOI: 10.1016/j.spl.2022.109618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222001523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Hamdy M. & El-Borai, Mahmoud M., 2018. "Hilfer fractional stochastic integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 182-189.
    2. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Kim, Hyunsoo & Sakthivel, Rathinasamy & Debbouche, Amar & Torres, Delfim F.M., 2020. "Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. Afreen, A. & Raheem, A. & Khatoon, A., 2022. "Controllability of a second-order non-autonomous stochastic semilinear system with several delays in control," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    2. Dhama, Soniya & Abbas, Syed & Debbouche, Amar, 2020. "Doubly-weighted pseudo almost automorphic solutions for stochastic dynamic equations with Stepanov-like coefficients on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Long, Shaohua & Zhang, Yu & Zhong, Shouming, 2024. "New results on the stability and stabilization for singular neutral systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    6. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Chen, Weihao & Liu, Yansheng & Zhao, Daliang, 2024. "Approximate controllability for a class of stochastic impulsive evolution system with infinite delay involving the fractional substantial derivative," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Haq, Abdul & Sukavanam, N., 2022. "Existence and partial approximate controllability of nonlinear Riemann–Liouville fractional systems of higher order," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Raheem, A. & Afreen, A. & Khatoon, A., 2023. "Multi-term time-fractional stochastic system with multiple delays in control," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Zakaria Ali & Minyahil Abera Abebe & Talat Nazir, 2024. "Strong Convergence of Euler-Type Methods for Nonlinear Fractional Stochastic Differential Equations without Singular Kernel," Mathematics, MDPI, vol. 12(18), pages 1-36, September.
    12. Akinlar, M.A. & Inc, Mustafa & Gómez-Aguilar, J.F. & Boutarfa, B., 2020. "Solutions of a disease model with fractional white noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    13. Han, Tianyong & Li, Zhao & Shi, Kaibo & Wu, Guo-Cheng, 2022. "Bifurcation and traveling wave solutions of stochastic Manakov model with multiplicative white noise in birefringent fibers," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    14. Vijayakumar, V. & Udhayakumar, R., 2020. "Results on approximate controllability for non-densely defined Hilfer fractional differential system with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:190:y:2022:i:c:s0167715222001523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.