IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v473y2024ics0096300324001152.html
   My bibliography  Save this article

New results on the stability and stabilization for singular neutral systems with time delay

Author

Listed:
  • Long, Shaohua
  • Zhang, Yu
  • Zhong, Shouming

Abstract

The stability issue and stabilization issue for a class of singular neutral systems are studied in this paper. Firstly, we give some sufficient conditions such that the considered open-looped systems are admissible. Secondly, we give some results which design the feedback controllers and ensure that the resulting close-looped systems are admissible. Finally, the superiority and effectiveness of the obtained methods are illustrated by two numerical examples. The results obtained in this paper can be employed to analyze the singular neutral systems which do not satisfy the restrictive conditions presented in some published papers.

Suggested Citation

  • Long, Shaohua & Zhang, Yu & Zhong, Shouming, 2024. "New results on the stability and stabilization for singular neutral systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001152
    DOI: 10.1016/j.amc.2024.128643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yao & Guo, Jun & Liu, Guobao & Lu, Junwei & Li, Fangyuan, 2021. "Finite-time sampled-data synchronization for uncertain neutral-type semi-Markovian jump neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    2. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Chen, Wenbin & Gao, Fang & She, Jinhua & Xia, Weifeng, 2020. "Further results on delay-dependent stability for neutral singular systems via state decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Jichun Wang & Qingling Zhang & Dong Xiao & Fang Bai, 2016. "Robust stability analysis and stabilisation of uncertain neutral singular systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3762-3771, December.
    5. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    6. Li, Hong & Li, Hou-biao & Zhong, Shou-ming, 2007. "Stability of neutral type descriptor system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1796-1800.
    7. Yang, Anqing & Ma, Shuping, 2023. "Event-triggered control for switched singular systems with asynchronous switching and state jumps," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    8. Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wenbin & Gao, Fang & She, Jinhua & Xia, Weifeng, 2020. "Further results on delay-dependent stability for neutral singular systems via state decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    3. Long, Shaohua & Wu, Yunlong & Zhong, Shouming & Zhang, Dian, 2018. "Stability analysis for a class of neutral type singular systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 113-131.
    4. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Bolat, Yaşar, 2009. "Oscillation of higher order neutral type nonlinear difference equations with forcing terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2973-2980.
    6. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    7. Sun, Meng & Zhuang, Guangming & Xia, Jianwei & Wang, Yanqian & Chen, Guoliang, 2022. "Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Fu, Xiuwen & Sheng, Zhaoliang & Lin, Chong & Chen, Bing, 2022. "New results on admissibility and dissipativity analysis of descriptor time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    9. Tian, Junkang & Xiong, Lianglin & Liu, Jianxing & Xie, Xiangjun, 2009. "Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1858-1866.
    10. Qiu, Fang & Cui, Baotong & Ji, Yan, 2009. "Novel robust stability analysis for uncertain neutral system with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1820-1828.
    11. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "New robust stability condition for uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1073-1079.
    13. Xiong, Lianglin & Zhong, Shouming & Tian, Junkang, 2009. "Novel robust stability criteria of uncertain neutral systems with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 771-777.
    14. Song, Xingxing & Lu, Hongqian & Xu, Yao & Zhou, Wuneng, 2022. "H∞ synchronization of semi-Markovian jump neural networks with random sensor nonlinearities via adaptive event-triggered output feedback control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 1-19.
    15. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    16. Feng, Zhiguang & Zhang, Xinyue & Lam, James & Fan, Chenchen, 2023. "Estimation of reachable set for switched singular systems with time-varying delay and state jump," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    17. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    18. Jichun Wang & Qingling Zhang & Dong Xiao & Fang Bai, 2016. "Robust stability analysis and stabilisation of uncertain neutral singular systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3762-3771, December.
    19. Ahmed, Hamdy M., 2022. "Construction controllability for conformable fractional stochastic evolution system with noninstantaneous impulse and nonlocal condition," Statistics & Probability Letters, Elsevier, vol. 190(C).
    20. Li, Boren, 2015. "A further note on stability criteria for uncertain neutral systems with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 72-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s0096300324001152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.