IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v186y2022ics0167715222000542.html
   My bibliography  Save this article

A characterization of normality via convex likelihood ratios

Author

Listed:
  • Jacobovic, Royi
  • Kella, Offer

Abstract

This work includes a new characterization of the multivariate normal distribution. In particular, it is shown that a positive density function f is Gaussian if and only if the f(x+y)/f(x) is convex in x for every y. This result has implications to recent research regarding inadmissibility of a test studied by Moran (1973).

Suggested Citation

  • Jacobovic, Royi & Kella, Offer, 2022. "A characterization of normality via convex likelihood ratios," Statistics & Probability Letters, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:stapro:v:186:y:2022:i:c:s0167715222000542
    DOI: 10.1016/j.spl.2022.109455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Novak, S.Y., 2007. "A new characterization of the normal law," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 95-98, January.
    2. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    3. Ejsmont, Wiktor, 2016. "A characterization of the normal distribution by the independence of a pair of random vectors," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 1-5.
    4. Henze, Norbert & Jiménez–Gamero, M. Dolores & Meintanis, Simos G., 2019. "Characterizations Of Multinormality And Corresponding Tests Of Fit, Including For Garch Models," Econometric Theory, Cambridge University Press, vol. 35(3), pages 510-546, June.
    5. Damian Jelito & Marcin Pitera, 2021. "New fat-tail normality test based on conditional second moments with applications to finance," Statistical Papers, Springer, vol. 62(5), pages 2083-2108, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    2. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    3. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    4. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    5. Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    6. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    7. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    8. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    9. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    10. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    11. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2021. "Multivariate Hermite polynomials and information matrix tests," Working Paper series 21-12, Rimini Centre for Economic Analysis.
    12. Norbert Henze & Celeste Mayer, 2020. "More good news on the HKM test for multivariate reflected symmetry about an unknown centre," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 741-770, June.
    13. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    14. Dante Amengual & Xinyue Bei & Enrique Sentana, 2022. "Normal but skewed?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1295-1313, November.
    15. Donghang Luo & Ke Zhu & Huan Gong & Dong Li, 2020. "Testing error distribution by kernelized Stein discrepancy in multivariate time series models," Papers 2008.00747, arXiv.org.
    16. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    17. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.
    18. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    19. Liang, Jiajuan & Tang, Man-Lai & Chan, Ping Shing, 2009. "A generalized Shapiro-Wilk W statistic for testing high-dimensional normality," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3883-3891, September.
    20. Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:186:y:2022:i:c:s0167715222000542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.