IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v185y2022ics0167715222000426.html
   My bibliography  Save this article

A criterion of quasi-infinite divisibility for discrete laws

Author

Listed:
  • Khartov, A.A.

Abstract

We consider arbitrary discrete probability laws on the real line. We obtain a criterion of their belonging to a new class of quasi-infinitely divisible laws, which is a wide natural extension of the class of well known infinitely divisible laws through the Lévy type representations.

Suggested Citation

  • Khartov, A.A., 2022. "A criterion of quasi-infinite divisibility for discrete laws," Statistics & Probability Letters, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:stapro:v:185:y:2022:i:c:s0167715222000426
    DOI: 10.1016/j.spl.2022.109436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khartov, A.A., 2019. "Compactness criteria for quasi-infinitely divisible distributions on the integers," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 1-6.
    2. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
    3. Kutlu, Merve, 2021. "On a denseness result for quasi-infinitely divisible distributions," Statistics & Probability Letters, Elsevier, vol. 176(C).
    4. David Berger, 2019. "On quasi‐infinitely divisible distributions with a point mass," Mathematische Nachrichten, Wiley Blackwell, vol. 292(8), pages 1674-1684, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vegard Nilsen & John Wyller, 2016. "QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single‐Hit Dose‐Response Models," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 163-181, January.
    2. Passeggeri, Riccardo, 2020. "Spectral representations of quasi-infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1735-1791.
    3. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.
    4. Kutlu, Merve, 2021. "On a denseness result for quasi-infinitely divisible distributions," Statistics & Probability Letters, Elsevier, vol. 176(C).
    5. Serban RAICU & Dorinela COSTESCU & Stefan BURCIU & Florin RUSCA & Mircea ROSCA, 2016. "Road Accident Estimation Model In Urban Areas," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 11(3), pages 33-42, September.
    6. Khartov, A.A., 2019. "Compactness criteria for quasi-infinitely divisible distributions on the integers," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 1-6.
    7. Jing Luo & Haoyu Wei & Xiaoyu Lei & Jiaxin Guo, 2021. "Asymptotic in a class of network models with an increasing sub-Gamma degree sequence," Papers 2111.01301, arXiv.org, revised Nov 2023.
    8. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:185:y:2022:i:c:s0167715222000426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.