IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v171y2021ics0167715220303035.html
   My bibliography  Save this article

Strongly consistent model selection for general causal time series

Author

Listed:
  • Kengne, William

Abstract

We consider the issue of strong consistency for model selection in a large class of causal time series models, including AR(∞), ARCH(∞), TARCH(∞), ARMA–GARCH and many other classical processes. We propose a penalized criterion based on the quasi likelihood of the model. We provide sufficient conditions that ensure the strong consistency of the proposed procedure. Also, the estimator of the parameter of the selected model obeys the law of iterated logarithm. It appears that, unlike the result of weak consistency obtained by Bardet et al. (2020), dependence between the regularization parameter and the model structure is not needed.

Suggested Citation

  • Kengne, William, 2021. "Strongly consistent model selection for general causal time series," Statistics & Probability Letters, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:stapro:v:171:y:2021:i:c:s0167715220303035
    DOI: 10.1016/j.spl.2020.109000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220303035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.109000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doukhan, Paul & Wintenberger, Olivier, 2008. "Weakly dependent chains with infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1997-2013, November.
    2. Bardet, Jean-Marc & Kengne, William, 2014. "Monitoring procedure for parameter change in causal time series," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 204-221.
    3. L. Zhao & C. Dorea & C. Gonçalves, 2001. "On Determination of the Order of a Markov Chain," Statistical Inference for Stochastic Processes, Springer, vol. 4(3), pages 273-282, October.
    4. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    5. William Charky Kengne, 2012. "Testing for parameter constancy in general causal time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 503-518, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Kengne, 2023. "On consistency for time series model selection," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 437-458, July.
    2. Diop, Mamadou Lamine & Kengne, William, 2022. "Epidemic change-point detection in general causal time series," Statistics & Probability Letters, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    2. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    3. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    4. Bardet, Jean-Marc & Kengne, William, 2014. "Monitoring procedure for parameter change in causal time series," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 204-221.
    5. Huaping Chen & Qi Li & Fukang Zhu, 2023. "A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 805-826, October.
    6. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    7. Resende, Paulo Angelo Alves & Dorea, Chang Chung Yu, 2016. "Model identification using the Efficient Determination Criterion," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 229-244.
    8. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    9. Aknouche, Abdelhakim & Demouche, Nacer, 2018. "Ergodicity conditions for a double mixed Poisson autoregression," MPRA Paper 88843, University Library of Munich, Germany.
    10. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    11. Estey, Clayton, 2024. "Robust Bellman State Prediction with Learning and Model Preferences," OSF Preprints 75fc9, Center for Open Science.
    12. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    13. KUROZUMI, Eiji & 黒住, 英司, 2016. "Monitoring Parameter Constancy with Endogenous Regressors," Discussion Papers 2016-01, Graduate School of Economics, Hitotsubashi University.
    14. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    15. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    16. Simon Hirsch & Jonathan Berrisch & Florian Ziel, 2024. "Online Distributional Regression," Papers 2407.08750, arXiv.org, revised Aug 2024.
    17. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
    18. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Jinwen Sun & Akash Deep & Shiyu Zhou & Dharmaraj Veeramani, 2023. "Industrial system working condition identification using operation-adjusted hidden Markov model," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2611-2624, August.
    20. Paul Doukhan, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 447-450, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:171:y:2021:i:c:s0167715220303035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.