IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i2p453-480.html
   My bibliography  Save this article

Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data

Author

Listed:
  • Juliana B. de Souza
  • Valdério A. Reisen
  • Glaura C. Franco
  • Márton Ispány
  • Pascal Bondon
  • Jane Meri Santos

Abstract

Environmental epidemiological studies of the health effects of air pollution frequently utilize the generalized additive model (GAM) as the standard statistical methodology, considering the ambient air pollutants as explanatory covariates. Although exposure to air pollutants is multi‐dimensional, the majority of these studies consider only a single pollutant as a covariate in the GAM model. This model restriction may be because the pollutant variables do not only have serial dependence but also interdependence between themselves. In an attempt to convey a more realistic model, we propose here the hybrid generalized additive model–principal component analysis–vector auto‐regressive (GAM–PCA–VAR) model, which is a combination of PCA and GAMs along with a VAR process. The PCA is used to eliminate the multicollinearity between the pollutants whereas the VAR model is used to handle the serial correlation of the data to produce white noise processes as covariates in the GAM. Some theoretical and simulation results of the methodology proposed are discussed, with special attention to the effect of time correlation of the covariates on the PCA and, consequently, on the estimates of the parameters in the GAM and on the relative risk, which is a commonly used statistical quantity to measure the effect of the covariates, especially the pollutants, on population health. As a main motivation to the methodology, a real data set is analysed with the aim of quantifying the association between respiratory disease and air pollution concentrations, especially particulate matter PM10, sulphur dioxide, nitrogen dioxide, carbon monoxide and ozone. The empirical results show that the GAM–PCA–VAR model can remove the auto‐correlations from the principal components. In addition, this method produces estimates of the relative risk, for each pollutant, which are not affected by the serial correlation in the data. This, in general, leads to more pronounced values of the estimated risk compared with the standard GAM model, indicating, for this study, an increase of almost 5.4% in the risk of PM10, which is one of the most important pollutants which is usually associated with adverse effects on human health.

Suggested Citation

  • Juliana B. de Souza & Valdério A. Reisen & Glaura C. Franco & Márton Ispány & Pascal Bondon & Jane Meri Santos, 2018. "Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 453-480, February.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:2:p:453-480
    DOI: 10.1111/rssc.12239
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12239
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    2. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    3. Anagnostidis, Panagiotis & Fontaine, Patrice, 2020. "Liquidity commonality and high frequency trading: Evidence from the French stock market," International Review of Financial Analysis, Elsevier, vol. 69(C).
    4. Diop, Mamadou Lamine & Kengne, William, 2022. "Epidemic change-point detection in general causal time series," Statistics & Probability Letters, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:2:p:453-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.