IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v180y2022ics0167715221002078.html
   My bibliography  Save this article

Construction of space-filling orthogonal Latin hypercube designs

Author

Listed:
  • Li, Hui
  • Yang, Liuqing
  • Liu, Min-Qian

Abstract

Latin hypercube designs (LHDs) play an important role in computer experiments, because they can achieve the maximum stratification when projected onto any one dimension. The orthogonal LHD (OLHD), as a special kind of LHDs, has been widely studied and used. OLHDs ensure that the estimates of main effects in linear models are uncorrelated. Also, it is crucial to use a design with good stratifications in order to explore the experimental region efficiently and build a high-quality metamodel. This paper first proposes a method to construct OLHDs with sd runs and d⌊(sd−1)/(d(s−1))⌋/2 factors, which achieve a stratification on an s2×s or s×s2 grid when projected onto any two dimensions. Moreover, most column pairs achieve stratifications on s2×s2 grids. Another method is further provided to construct OLHDs with more factors, which achieve the aforementioned stratifications in each sub-design. The resulting OLHDs are more space-filling than existing OLHDs.

Suggested Citation

  • Li, Hui & Yang, Liuqing & Liu, Min-Qian, 2022. "Construction of space-filling orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002078
    DOI: 10.1016/j.spl.2021.109245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221002078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuanzhen He & Boxin Tang, 2013. "Strong orthogonal arrays and associated Latin hypercubes for computer experiments," Biometrika, Biometrika Trust, vol. 100(1), pages 254-260.
    2. Fasheng Sun & Min-Qian Liu & Dennis K. J. Lin, 2009. "Construction of orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 96(4), pages 971-974.
    3. David M. Steinberg & Dennis K. J. Lin, 2006. "A construction method for orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 93(2), pages 279-288, June.
    4. Fasheng Sun & Boxin Tang, 2017. "A general rotation method for orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 104(2), pages 465-472.
    5. C. Devon Lin & Rahul Mukerjee & Boxin Tang, 2009. "Construction of orthogonal and nearly orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 96(1), pages 243-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    2. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2022. "Construction of column-orthogonal strong orthogonal arrays," Statistical Papers, Springer, vol. 63(2), pages 515-530, April.
    3. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    4. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
    5. Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.
    6. Stelios Georgiou & Christos Koukouvinos & Min-Qian Liu, 2014. "U-type and column-orthogonal designs for computer experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1057-1073, November.
    7. Ifigenia Efthimiou & Stelios Georgiou & Min-Qian Liu, 2015. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 45-57, January.
    8. Mandal, B.N. & Dash, Sukanta & Parui, Shyamsundar & Parsad, Rajender, 2016. "Orthogonal Latin hypercube designs with special reference to four factors," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 181-185.
    9. Fasheng Sun & Boxin Tang, 2017. "A Method of Constructing Space-Filling Orthogonal Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 683-689, April.
    10. Chen, Hao & Yang, Jinyu & Lin, Dennis K.J. & Liu, Min-Qian, 2019. "Sliced Latin hypercube designs with both branching and nested factors," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 124-131.
    11. Weiping Zhou & Jinyu Yang & Min-Qian Liu, 2021. "Construction of orthogonal marginally coupled designs," Statistical Papers, Springer, vol. 62(4), pages 1795-1820, August.
    12. Su, Zheren & Wang, Yaping & Zhou, Yingchun, 2020. "On maximin distance and nearly orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 166(C).
    13. Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
    14. Li Gu & Jian-Feng Yang, 2013. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 819-830, August.
    15. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    16. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    17. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    18. Jiang, Bochuan & Wang, Zuzheng & Wang, Yaping, 2021. "Strong orthogonal arrays of strength two-plus based on the Addelman–Kempthorne method," Statistics & Probability Letters, Elsevier, vol. 175(C).
    19. Prescott, Philip, 2009. "Orthogonal-column Latin hypercube designs with small samples," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1191-1200, February.
    20. Zujun Ou & Minghui Zhang & Hongyi Li, 2023. "Triple Designs: A Closer Look from Indicator Function," Mathematics, MDPI, vol. 11(3), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.