IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v175y2021ics0167715221000766.html
   My bibliography  Save this article

Strong orthogonal arrays of strength two-plus based on the Addelman–Kempthorne method

Author

Listed:
  • Jiang, Bochuan
  • Wang, Zuzheng
  • Wang, Yaping

Abstract

Based on nonregular orthogonal arrays via the Addelman–Kempthorne method, we propose a novel construction of strong orthogonal arrays of strength 2+. The resulting designs have 2sn runs with s being any odd prime power and fill some run-size gaps left by existing constructions.

Suggested Citation

  • Jiang, Bochuan & Wang, Zuzheng & Wang, Yaping, 2021. "Strong orthogonal arrays of strength two-plus based on the Addelman–Kempthorne method," Statistics & Probability Letters, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:stapro:v:175:y:2021:i:c:s0167715221000766
    DOI: 10.1016/j.spl.2021.109114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221000766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongdao Zhou & Boxin Tang, 2019. "Column-orthogonal strong orthogonal arrays of strength two plus and three minus," Biometrika, Biometrika Trust, vol. 106(4), pages 997-1004.
    2. Yuanzhen He & Boxin Tang, 2013. "Strong orthogonal arrays and associated Latin hypercubes for computer experiments," Biometrika, Biometrika Trust, vol. 100(1), pages 254-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grömping, Ulrike, 2023. "A unifying implementation of stratum (aka strong) orthogonal arrays," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2022. "Construction of column-orthogonal strong orthogonal arrays," Statistical Papers, Springer, vol. 63(2), pages 515-530, April.
    2. Grömping, Ulrike, 2023. "A unifying implementation of stratum (aka strong) orthogonal arrays," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    3. Mengmeng Liu & Min-Qian Liu & Jinyu Yang, 2022. "Construction of group strong orthogonal arrays of strength two plus," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 657-674, August.
    4. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    5. Li, Hui & Yang, Liuqing & Liu, Min-Qian, 2022. "Construction of space-filling orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 180(C).
    6. Wang, Chunyan & Lin, Dennis K.J., 2024. "Strong orthogonal Latin hypercubes for computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    7. Zujun Ou & Minghui Zhang & Hongyi Li, 2023. "Triple Designs: A Closer Look from Indicator Function," Mathematics, MDPI, vol. 11(3), pages 1-12, February.
    8. Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:175:y:2021:i:c:s0167715221000766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.