IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i2p465-472..html
   My bibliography  Save this article

A general rotation method for orthogonal Latin hypercubes

Author

Listed:
  • Fasheng Sun
  • Boxin Tang

Abstract

SummaryOrthogonal Latin hypercubes provide a class of useful designs for computer experiments. Among the available methods for constructing such designs, the method of rotation is particularly prominent due to its theoretical appeal as well as its space-filling properties. This paper presents a general method of rotation for constructing orthogonal Latin hypercubes, making the rotation idea applicable to many more situations than the original method allows. In addition to general theoretical results, many new orthogonal Latin hypercubes are obtained and tabulated.

Suggested Citation

  • Fasheng Sun & Boxin Tang, 2017. "A general rotation method for orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 104(2), pages 465-472.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:465-472.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    2. Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.
    3. Su, Zheren & Wang, Yaping & Zhou, Yingchun, 2020. "On maximin distance and nearly orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 166(C).
    4. Wang, Chunyan & Lin, Dennis K.J., 2024. "Strong orthogonal Latin hypercubes for computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    5. Weiping Zhou & Jinyu Yang & Min-Qian Liu, 2021. "Construction of orthogonal marginally coupled designs," Statistical Papers, Springer, vol. 62(4), pages 1795-1820, August.
    6. Li, Hui & Yang, Liuqing & Liu, Min-Qian, 2022. "Construction of space-filling orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 180(C).
    7. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:465-472.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.