IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v169y2021ics0167715220302650.html
   My bibliography  Save this article

Empirical likelihood based on synthetic right censored data

Author

Listed:
  • Liang, Wei
  • Dai, Hongsheng

Abstract

In this paper, we develop a Mean Empirical Likelihood (MeanEL) method for right censored data. This MeanEL approach is based on traditional empirical likelihood methods but uses synthetic data to construct an EL ratio statistics, which is shown to have a χ2 limiting distribution. Different simulation studies show that the MeanEL confidence intervals tend to have more accurate coverage probabilities than other existing Empirical Likelihood methods. Theoretical comparisons of different EL methods are also provided under a general framework.

Suggested Citation

  • Liang, Wei & Dai, Hongsheng, 2021. "Empirical likelihood based on synthetic right censored data," Statistics & Probability Letters, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:stapro:v:169:y:2021:i:c:s0167715220302650
    DOI: 10.1016/j.spl.2020.108962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220302650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Liang, Wei & Dai, Hongsheng & He, Shuyuan, 2019. "Mean Empirical Likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 155-169.
    3. Shuyuan He & Wei Liang & Junshan Shen & Grace Yang, 2016. "Empirical Likelihood for Right Censored Lifetime Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 646-655, April.
    4. Qi-Hua Wang & Bing-Yi Jing, 2001. "Empirical Likelihood for a Class of Functionals of Survival Distribution with Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 517-527, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayin Zheng & Junshan Shen & Shuyuan He, 2014. "Adjusted empirical likelihood for right censored lifetime data," Statistical Papers, Springer, vol. 55(3), pages 827-839, August.
    2. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    3. Peñaranda, Francisco & Sentana, Enrique, 2016. "Duality in mean-variance frontiers with conditioning information," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 762-785.
    4. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    5. Masakatsu Okubo, 2011. "The Intertemporal Elasticity of Substitution: An Analysis Based on Japanese Data," Economica, London School of Economics and Political Science, vol. 78(310), pages 367-390, April.
    6. Xu Cheng & Winston Wei Dou & Zhipeng Liao, 2022. "Macro‐Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models," Econometrica, Econometric Society, vol. 90(2), pages 685-713, March.
    7. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    8. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    9. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    10. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    11. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    12. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    13. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    14. Kristensen, Dennis & Mogensen, Patrick K. & Moon, Jong Myun & Schjerning, Bertel, 2021. "Solving dynamic discrete choice models using smoothing and sieve methods," Journal of Econometrics, Elsevier, vol. 223(2), pages 328-360.
    15. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    16. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    17. Martins, Luis F. & Gabriel, Vasco J., 2009. "New Keynesian Phillips Curves and potential identification failures: A Generalized Empirical Likelihood analysis," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 561-571, December.
    18. James M. Malcomson & Sophocles Mavroeidis, 2007. "Matching Frictions, Efficiency Wages, and Unemployment in the USA and the UK," Working Papers 2007-02, Brown University, Department of Economics.
    19. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    20. Minsu Chang & Francis J. DiTraglia, 2020. "A Generalized Focused Information Criterion for GMM," Papers 2011.07085, arXiv.org.
    21. Wen Yu & Yunting Sun & Ming Zheng, 2011. "Empirical likelihood method for linear transformation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 331-346, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:169:y:2021:i:c:s0167715220302650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.